N皇后问题

问题描述

n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

上图为 8 皇后问题的一种解法。
给定一个整数 n,返回所有不同的 n 皇后问题的解决方案。
每一种解法包含一个明确的 n 皇后问题的棋子放置方案,该方案中 ‘Q’ 和 ‘.’ 分别代表了皇后和空位。
示例:
输入: 4
输出: [
[".Q…", // 解法 1
“…Q”,
“Q…”,
“…Q.”],
["…Q.", // 解法 2
“Q…”,
“…Q”,
“.Q…”]
]
解释: 4 皇后问题存在两个不同的解法。

解题思路

代码
代码思路
一行一行地摆放,在确定一行中的那个皇后应该摆在哪一列时,需要当前列是否合法,如果合法,则将皇后放置在当前位置,并进行递归,回溯。每行都摆满皇后时,则产生了一种解法,将所有解法收集并返回。
判断合法:当前将要摆放’Q’的位置和其他已摆放‘Q’的位置不能在同一列,且不能在同一条45度斜线或135度斜线上。这里判断是否在同一条斜线上可通过当前将要摆放’Q’的位置和其他已摆放‘Q’的位置横坐标之差和纵坐标之差的绝对值是否相等来判断

class Solution {
    public List<List<String>> solveNQueens(int n) {
        char[][] chs=new char[n][n];
        for(int i=0;i<n;i++){
            for(int j=0;j<n;j++){
                chs[i][j]='.';
            }
        }
        List<List<String>> res=new ArrayList<>();
        backTracing(chs,0,n,res);
        return res;
    }
    public void backTracing(char[][] chs,int row,int n,List<List<String>> res){
    	//每行都摆满皇后时,则产生了一种解法
        if(row==n){
            res.add(chsToList(chs));
            return;
        }
        //一行一行地摆放,在确定一行中的那个皇后应该摆在哪一列时,需要当前列是否合法。
        //如果合法,则将皇后放置在当前位置,并进行递归,回溯。
        for(int col=0;col<chs[0].length;col++){
            if(isValid(chs,row,col)){
                chs[row][col]='Q';
                //递归
                backTracing(chs,row+1,n,res);
                //回溯
                chs[row][col]='.';
            }
        }
    }
    public List<String> chsToList(char[][] chs){
        List<String> list=new ArrayList<>();
        for(int i=0;i<chs.length;i++){
            list.add(new String(chs[i]));
        }
        return list;
    }
    //判断合法:当前将要摆放'Q'的位置和其他已摆放‘Q’的位置不能在同一列,且不能在同一条45度斜线或135度斜线上。
    //这里判断是否在同一条斜线上可通过当前将要摆放'Q'的位置和其他已摆放‘Q’的位置横坐标之差和纵坐标之差的绝对值是否相等来判断。
    public boolean isValid(char[][] chs,int x,int y){
        for(int i=0;i<=x;i++){
            for(int j=0;j<chs[0].length;j++){
                if(chs[i][j]=='Q'&&(j==y||Math.abs(x-i)==Math.abs(y-j))){
                    return false;
                }
            }
        }
        return true;
    }
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值