第三次打卡

批量归一化

原理

1.对全连接层做批量归一化
位置:全连接层中的仿射变换和激活函数之间。
在这里插入图片描述
2.对卷积层做批量归⼀化
位置:卷积计算之后、应⽤激活函数之前。
如果卷积计算输出多个通道,我们需要对这些通道的输出分别做批量归一化,且每个通道都拥有独立的拉伸和偏移参数。 计算:对单通道,batchsize=m,卷积计算输出=pxq 对该通道中m×p×q个元素同时做批量归一化,使用相同的均值和方差。

3.预测时的批量归⼀化
训练:以batch为单位,对每个batch计算均值和方差。
预测:用移动平均估算整个训练数据集的样本均值和方差。

残差网络

残差块(Residual Block)
恒等映射:
左边:f(x)=x
右边:f(x)-x=0 (易于捕捉恒等映射的细微波动)
在这里插入图片描述
在残差块中,输⼊可通过跨层的数据线路更快 地向前传播。

稠密连接网络

在这里插入图片描述

凸优化

函数:
在这里插入图片描述
Jensen 不等式:
在这里插入图片描述

梯度下降

梯度下降法的流程:
1、初始化:随机选取取值范围内的任意数 ;
2、循环操作:计算梯度,修改新的变量, 判断是否达到终止,如果前后两次的函数值差的绝对值小于阈值,则跳出循环,否则继续;
3、输出最终结果。

优化算法进阶

指数加权平均

公式:
在这里插入图片描述
带偏差修正的指数加权平均,公式:
在这里插入图片描述

动量法

在这里插入图片描述

word2vec

Skip-Gram 跳字模型

在这里插入图片描述

负采样近似

在这里插入图片描述

损失函数

在这里插入图片描述

词嵌入进阶

GloVe 模型,则是在Word2Vec 的基础上做出了以下几点改动:
在这里插入图片描述

文本情感分类

循环神经网络

双向循环神经网络
在这里插入图片描述

卷积神经网络

一维卷积层在这里插入图片描述在这里插入图片描述
时序最大池化层
在这里插入图片描述

TextCNN 模型

TextCNN 模型主要使用了一维卷积层和时序最大池化层。假设输入的文本序列由 n个词组成,每个词用 d维的词向量表示。那么输入样本的宽为n,输入通道数为d。TextCNN 的计算主要分为以下几步。
1.定义多个一维卷积核,并使用这些卷积核对输入分别做卷积计算。宽度不同的卷积核可能会捕捉到不同个数的相邻词的相关性。
2.对输出的所有通道分别做时序最大池化,再将这些通道的池化输出值连结为向量。
3.通过全连接层将连结后的向量变换为有关各类别的输出。这一步可以使用丢弃层应对过拟合。
下图用一个例子解释了 TextCNN 的设计。这里的输入是一个有 11 个词的句子,每个词用 6 维词向量表示。因此输入序列的宽为 11,输入通道数为 6。给定 2 个一维卷积核,核宽分别为 2 和 4,输出通道数分别设为 4 和 5。因此,一维卷积计算后,4 个输出通道的宽为 11−2+1=10,而其他 5 个通道的宽为 11−4+1=8。尽管每个通道的宽不同,我们依然可以对各个通道做时序最大池化,并将 9 个通道的池化输出连结成一个 9 维向量。最终,使用全连接将 9 维向量变换为 2 维输出,即正面情感和负面情感的预测。
在这里插入图片描述

数据增强

图像增广(image augmentation)技术通过对训练图像做一系列随机改变,来产生相似但又不同的训练样本,从而扩大训练数据集的规模。图像增广的另一种解释是,随机改变训练样本可以降低模型对某些属性的依赖,从而提高模型的泛化能力。例如,我们可以对图像进行不同方式的裁剪,使感兴趣的物体出现在不同位置,从而减轻模型对物体出现位置的依赖性。我们也可以调整亮度、色彩等因素来降低模型对色彩的敏感度。

模型微调

微调由以下4步构成:
1.在源数据集(如ImageNet数据集)上预训练一个神经网络模型,即源模型。
2.创建一个新的神经网络模型,即目标模型。它复制了源模型上除了输出层外的所有模型设计及其参数。我们假设这些模型参数包含了源数据集上学习到的知识,且这些知识同样适用于目标数据集。我们还假设源模型的输出层跟源数据集的标签紧密相关,因此在目标模型中不予采用。
3.为目标模型添加一个输出大小为目标数据集类别个数的输出层,并随机初始化该层的模型参数。
4.在目标数据集(如椅子数据集)上训练目标模型。我们将从头训练输出层,而其余层的参数都是基于源模型的参数微调得到的。
在这里插入图片描述

以上内容来自课程《动手学》。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值