论文阅读
文章平均质量分 61
记录一些对论文的理解
一条活在淡水湖里的鱼
这个作者很懒,什么都没留下…
展开
-
BERT-based Lexical Substitution论文阅读
摘要:之前的词汇替换是通过查询目标词汇的同义词来实现的(e.g. WordNet), 然后基于文本对候选词打分。这种方法有两个限制: 忽略了不是同义词的但是效果很好的候选词汇 没有考虑同意替换对整个文本的影响 主体:对目标词进行embedding dropout,使得可以平衡目标词的语义信息和上下文信息。如果完全遮盖,返回的候选词可能与原词意思不同,却能满足上下文信息;如果不遮盖,返回的候选词大约99.99%会预测到原词。计算相似度时,将BERT前四层的表示做原创 2022-04-02 16:50:42 · 1115 阅读 · 2 评论 -
BERT论文阅读笔记
介绍1、双向预训练模型,使用MLM(masked language model):2、预训练模型,降低模型复杂度BERT是自监督学习(无监督学习),结构是Transformer Encoder.结构: pre-training: 预训练阶段,使用无标注文本数据 fine-tuning: 在下游任务使用监督数据进行微调GPT Transformer只可以进行左边文本的自注意力计算BERT可以进行双向注意力计算输入/输出特征输入单个句子:每个句原创 2022-04-02 14:43:49 · 1105 阅读 · 0 评论