win7(win10也适用)系统安装GPU/CPU版tensorflow

win7系统安装GPU/CPU版tensorflow

tensorflow分为CPU版和GPU版,GPU效率更好,当然,tensorflow只支持NVIDIA显卡,其他的显卡不支持。

工具/原料

windows 7

python3.5(64位)

计算力不小于3.0的NVIDIA显卡                  

tensorflow版本 1.4.0-GPU

CUDA版本 8.0.44 (之前一直出现 ImportError:DLL load failed: 找不到指定的模块。和ImportError: No module named'_pywrap_tensorflow_internal' , cuda9.0.176-win7 错! cuda8.0.61-win7 错! cuda8.0.44-win7!对了!)https://developer.nvidia.com/cuda-80-download-archive

cudnn 6.0版本 (这个是tensorflow1.4.0要求的,必须是这个版本)

python 3.5 (必须必须!)

 

方法/步骤

1.注意:如果只是安装CPU版,可忽略此步骤。

cuda有些功能会依赖vs2015,可以去网上下载一下社区版的vs2015,完全免费。

2.注意:如果你只是安装CPU版,可忽略此步骤。

去以下nvidia官网去下载cuda:

https://developer.nvidia.com/cuda-downloads

选择,“windows”--“x86_64”--“7”--“exe(local)”,点击“Download”,文件大概有1.3GB.

下载完成后,双击安装,很简单,不再赘述。

测试一下是否安装成功,命令行输入 nvcc -V ,看到版本信息就表示安装成功了。

3.注意:如果你只是安装CPU版,可忽略此步骤。

去nvidia官网去下载cuDNN:

https://developer.nvidia.com/rdp/cudnn-download

这个需要注册一个用户,并且填写一下问卷,否则无法下载。

注意,建议下载v5.1的,v6.0有很多问题(当然,如果你的显卡是很新款的话,不妨试一下,像我的显示是GTX650Ti的,就安装v6.0就会报“ImportError: DLL load failed: 找不到指定的模块”错误)

下载完成后,解压。解压后,会看到名为“cuda”的文件夹,文件夹下面有3个子文件夹(bin,lib,include),需要把这3个子文件夹复制“NVIDIA GPU ComputingToolkit\CUDA\v8.0”文件夹下(系统会提示已经存在,是否合并,选择确定就可以了),一般的路径是:C:\ProgramFiles\NVIDIA GPU Computing Toolkit\CUDA\v8.0

.          

4.  修改环境变量:左击桌面的“计算机”图标,依次选择“高级系统设置”--“环境变量”,在“系统变量(S)”中找到Path选项,双击编辑“变量值(V)”:你需要以下的路径是否在Path中,如果没有,就添加对应的路径(一般是最后两个路径没有):

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin

C:\Program Files\NVIDIA GPU ComputingToolkit\CUDA\v8.0\libnvvp

C:\Program Files\NVIDIA GPU ComputingToolkit\CUDA\v8.0\lib

C:\Program Files\NVIDIA GPU ComputingToolkit\CUDA\v8.0\include

5.  下载安装python,记得勾选“Add Python x.x to Path”

TensorFlow支持2种方式安装:

PIP方式,直接去Python官网去下载对应的PythonWindows安装包就行了,要注意32位和64位版本的选择。

要注意,TensorFlow目前只能用Python 3.5.X版本的。所以不要下载错了版本。

下载链接:https://www.python.org/downloads/release/python-352/

系统变量也加好了,安装好Python后,打开CMD,验证Python是否安装成功,输入:Python,出现Python版本号证明安装成功。

 

6.安装完成后,点击window徽标,输入powershell回事,调出powershell命令行。

如果是想安装CPU版本的,在命令行输入“pipinstall tensorflow”就可以了。

需要注意的是,cpu版本可能依赖MSVCP140.DLL这个文件,确保在C:\Windows\SysWOW64路径下面。

 

如果是想安装GPU版本的,在命令行输入“pipinstall tensorflow-gpu”就可以了。同样不需要指定版本号与地址,系统自动匹配最优的版本。

 

Python安装好后,我们就要进行下载安装TesorFlow需要的库了。

CPU版本命令输入:

[java] view plain copy

1.     pip3 install --upgrade tensorflow  

GPU版本命令输入:

[java] view plain copy

1.     pip3 install --upgrade tensorflow-gpu  

等待自动下载。

整个过程TensorFlow需要安装:numpy、six、wheel、appdirs、pyparsing、packaging、setuptools、protobuf、werkzeug、tensorflow。



 

 

 

7.安装完TensorFlow后,我们写一个例子进行测试下是否可以运行。在程序里找到:Python3.5或者CMD里输入Python即可进入输入编码模式。

在powershell命令行输入python回车,并在python环境下,依次输入如下命令,看能否运行:

>>>import tensorflow as tf

>>>sess=tf.Session()

>>>print(sess.run(tf.constant(666)))

如果结果是666,那么恭喜您,已经成功搭建tensorflow开发环境了,心情享受人工智能高逼格的开发乐趣吧!

官方例子:

[java] viewplain copy

1.     >>> import tensorflow as tf  

2.     >>> hello = tf.constant('Hello, TensorFlow!')  

3.     >>> sess = tf.Session()  

4.     >>> print(sess.run(hello))  

会输出:

[java] viewplain copy

1.     Hello, TensorFlow!  

另外一个计算的例子:

[java] viewplain copy

1.     >>>import tensorflow as tf    

2.     >>>sess = tf.Session()    

3.     >>>a = tf.constant(10)    

4.     >>>b = tf.constant(22)    

5.     >>>print(sess.run(a + b))     

会输出:

[java] viewplain copy

1.     32  

 

 

 

注意事项

GPU版需要依赖vs2015、cuda和cuDNN,记得安装

cpu版本可能依赖MSVCP140.DLL这个文件,确保在C:\Windows\SysWOW64路径下面

 

 

 

国内PIP源:

清华:https://pypi.tuna.tsinghua.edu.cn/simple

阿里云:http://mirrors.aliyun.com/pypi/simple/

中国科技大学https://pypi.mirrors.ustc.edu.cn/simple/

华中理工大学:http://pypi.hustunique.com/

山东理工大学:http://pypi.sdutlinux.org/ 

豆瓣:http://pypi.douban.com/simple/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值