知识图谱 赵军
JYNjyn666
这个作者很懒,什么都没留下…
展开
-
【知识图谱 赵军 学习笔记】第十章 知识问答与对话
第十章 知识问答与对话自动问答概述知识问答知识问答技术概述基于语义解析的方法有监督方法语义组合模型语义辞典构造组合消歧模型无监督方法基于搜索排序的方法基于特征工程的方法问句特征抽取候选答案特征提取问句-候选答案匹配基于表示学习的神经网络方法常用评测数据及各方法性能比较知识对话知识对话技术概述任务导向型对话模型自然语言理解对话管理基于有限自动机的方法基于框架的方法基于概率模型的方法自然语言生成通用对话模型基于模板的方法端到端的方法目前的问答和对话系统大多只能回答事实性问答,不能很好处理复杂问题自动问答概述原创 2020-12-21 19:05:40 · 1094 阅读 · 0 评论 -
【知识图谱 赵军 学习笔记】第九章 知识推理
第九章 知识推理知识图谱中的典型推理任务知识补全知识问答知识推理分类归纳推理和演绎推理归纳推理演绎推理确定性推理与不确定性推理确定性逻辑推理不确定性推理概率图模型概率逻辑推理关联规则挖掘符号推理数值推理基于符号演算的推理归纳推理频繁子图挖掘归纳逻辑编程结构学习方法演绎推理确定性推理:λ\lambdaλ演算不确定性推理:马尔科夫逻辑网和概率软逻辑基于数值计算的推理基于张量分解的方法基于能量函数的方法符号演算和数值计算的融合推理常识知识推理知识图谱中的典型推理任务知识补全也称为面向知识库或知识图谱的事实补原创 2020-12-17 15:15:51 · 1626 阅读 · 1 评论 -
【知识图谱 赵军 学习笔记】第八章 知识存储和检索
第八章 知识图谱和检索知识图谱的存储基于表结构的存储三元组表类型表关系数据库基于图结构的存储基于图结构的存储模型知识图谱的检索SQL语言数据插入数据修改数据删除数据查询SPAROL语言数据插入数据删除数据更新数据查询图检索技术子图筛选基于路径的索引基于子图的索引子图同构判定知识图谱是一种有向图结构,描述了现实世界中存在的实体、事件或者概念以及它们之间的关系。其中图的节点表示实体、事件或者概念,图的边表示相邻节点间的关系知识图谱的存储知识图谱中的知识是通过RDF结构进行表示的,其基本构成单元是事实。每个原创 2020-12-11 15:56:10 · 878 阅读 · 0 评论 -
【知识图谱 赵军 学习笔记】第七章 事件抽取
第七章 事件抽取任务概述评测会议限定域事件抽取任务概述事件:是发生在某个特定的时间点或时间段、某个特定的地域范围内,由一个或者多个角色参与的一个或者多个动作组成的事情或者状态的改变事件抽取:主要研究如何从描述事件信息的文本中抽取出用户感兴趣的事件信息并以结构化的形式呈现出来几个有关与事件抽取相关的概念:事件指称:是指对一个客观发生的具体事件进行的自然语言形式的描述,通常是一个句子或者句群事件触发词:是指一个事件指称中最能代表事件发生的词,是决定事件类别的重要特征事件元素:是指事件中的参与者,原创 2020-12-07 16:31:23 · 1294 阅读 · 0 评论 -
【知识图谱 赵军 学习笔记】第六章 关系抽取
第六章 关系抽取任务概述任务分类任务难点相关测评限定域关系抽取基于模板的关系抽取方法基于机器学习的关系抽取方法有监督的关系抽取方法基于特征工程的方法基于核函数的方法基于神经网络的方法开放域关系抽取任务概述关系抽取是指自动识别实体之间具有的某种语义关系,可分为二元关系抽取和多元关系抽取,其对问答系统、智能客服、聊天机器人、语义搜索等应用十分重要二元关系抽取:是指两个实体间的关系,用(arg1,relation,arg2)(arg1,relation ,arg2)(arg1,relation,arg2)原创 2020-12-03 19:51:55 · 1121 阅读 · 0 评论 -
【知识图谱 赵军 学习笔记】第五章 实体消歧
第五章 实体消歧任务概述定义分类基于聚类的实体消歧系统基于实体链接的实体消歧系统相关评测WePSTAC KBP基于聚类的实体消歧方法实体具有歧义性,体现在两个方面:同一实体在文本中会有不同的指称 ⇒\Rightarrow⇒ 指称的多样性相同的实体指称在不同的上下文中可以指不同的实体 ⇒\Rightarrow⇒ 指称的歧义性任务概述定义实体消歧可以通过六元组进行定义:M=N,E,D,O,K,δM = N,E,D,O,K,\deltaM=N,E,D,O,K,δN=n1,n2,...,nlN原创 2020-11-30 11:10:39 · 1510 阅读 · 0 评论 -
【知识图谱 赵军 学习笔记】第四章 实体识别和扩展
第四章 实体识别和扩展实体识别过程难点基于规则的实体识别方法基于规则的方法基于机器学习的实体识别基于特征的方法基于神经网络的方法细粒度实体识别实体扩展基于模板的实体抽取基于统计的实体抽取基于上下文相似度的方法融合模板与上下文相似度的方法种子处理与结果过滤种子处理结果过滤实体识别命名实体识别任务是识别出文本中实体的命名性指称项,并标明其类别,一般来说,是识别出待处理文本中的三大类(实体类、时间类、数字类)和七小类(人名、机构名、地名、时间、日期、货币和百分比)过程命名实体识别过程通常包括两个部分:原创 2020-11-26 15:47:47 · 920 阅读 · 0 评论 -
【知识图谱 赵军 学习笔记】第三章 知识体系构建和知识融合
第三章 知识体系构建和知识融合知识体系构建人工构建方法确定领域及任务体系复用罗列要素确定分类体系定义属性及关系定义约束自动构建方法基于非结构化数据的知识体系学习领域概念抽取分类体系构建概念属性基于结构化数据的知识体系学习基于半结构化数据的知识体系学习典型知识体系知识融合框架匹配元素级匹配基于字符串匹配的技术实现词向量结构级匹配基于图的技术基于分类体系的技术实体对齐冲突检测与消解典型知识融合系统知识体系构建知识体系主要包含三个方面的核心内容:对概念的分类概念属性的描述概念之间相互关系的定义知识原创 2020-11-25 13:51:08 · 608 阅读 · 0 评论 -
【知识图谱 赵军 学习笔记】第二章 知识表示
第二章 知识表示经典知识表示理论逻辑语义网络框架脚本语义网中的知识表示方法语义网知识描述体系XMLRDFOWL知识图谱中的知识表示方法表示框架知识图谱的数值化表示方法经典知识表示理论逻辑分为 命题逻辑、一阶谓词逻辑、高阶谓词逻辑命题逻辑具有最简单的语法,定义了具有真假的原子命题,并可以通过与(∩\cap∩)、或(∪\cup∪)、非(¬\lnot¬)、蕴含(⇒\Rightarrow⇒)、当且仅当(⇔\Leftrightarrow⇔)等逻辑连接符将多个原子命题合成复合命题,推理过程就根据逻辑连接词的真原创 2020-11-24 19:42:16 · 572 阅读 · 1 评论 -
【知识图谱 赵军 学习笔记】第一章概论
第一章 概论知识知识图谱的三元表示知识图谱的特点知识图谱类型知识图谱生命周期知识体系构建知识图谱(Knowledge Graph),是从Wikipedia抽取出来的、规模巨大的、以相互关联的实体及其属性为核心的知识网络知识1、陈述性知识(描述客观事物的性状等相关信息)事物(特定的事或物)概念(对一类事物本质特性的反应)命题(对事物之间关系的陈述)非概括性命题 (特定事物之间的关系)概括性命题(概念之间的普遍关系)过程性知识(描述问题如何求解等动态信原创 2020-11-24 13:14:47 · 1075 阅读 · 0 评论