- 博客(3)
- 收藏
- 关注
原创 Semi-supervised Single-Image Dehazing Network via Disentangled Meta-Knowledge TMM(2023) 论文阅读
paper:code:室外场景采集到的图像很容易受到雾霾的影响。由于真实世界环境的复杂性和训练数据集的域差异,大多数图像去雾方法对真实世界雾霾图像的泛化能力有限。本文提出了一种基于解耦元知识的半监督单图像去雾网络。解耦网络的对称异构设计有利于分离雾霾图像的内容特征和降质特征,并将这些特征作为元知识,指导去雾网络中的特征融合过程。此外,提出色彩恒定损失和解耦重建损失,以确保生成的去雾图像的主观质量。在合成数据集和真实世界图像上进行的大量实验结果表明,所提出的算法优于最先进的单图像去雾算法。
2023-08-08 11:39:42 333
原创 Effective Meta-Attention Dehazing Networks for Vision-Based Outdoor Industrial Systems-TII(2022)
雾霾严重影响工业系统的可靠性,尤其是基于视觉的室外工业系统,如自动驾驶系统。现有的大多数去雾方法都不是专门为工业系统设计的,也没有考虑到工业系统实施的可靠性和资源成本。本研究提出了一种新颖的元注意力去雾霾网络(MADN),无需使用物理散射模型即可直接从雾霾图像中还原清晰图像。元网络结合并行操作和增强模块,通过元-注意力模块根据当前输入的图像自动选择最合适的去雾网络结构。此外,结合元网络提出了一种新颖的特征损失计算方法,可以加快去雾网络的收敛速度,满足实际工业系统的应用要求。在合成数据集和真实数据集上的大量实
2023-07-19 23:01:59 320 2
原创 USID-Net: Unsupervised Single Image Dehazing Network via Disentangled Representations-TMM(2022)
USID-Net: Unsupervised Single Image Dehazing Network via Disentangled Representations-TMM(2022)
2023-07-18 22:29:10 749 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人