- 博客(3)
- 收藏
- 关注
原创 cleverhans的FGSM方法mnist数据集上的实验结果
cleverhans的FGSM方法mnist数据集上的实验结果直接pip install了cleverhans库,cleverhans_tutorial文件夹的mnist_tutorial运行一下,能看到用FGSM方法经过迭代训练后的生成对抗样本的成功率1. 第一部分FGSM方法在MNIST数据集上生成对抗样本的成功率(示例代码中没有指定y_target这个参数,因此是无目标攻击)[INFO 2020-08-12 16:44:29,809 cleverhans] Epoch 0 took 126.8
2020-08-12 18:29:29 1271
转载 MNIST数字识别——双隐层全连接神经网络
单隐层的全连接神经网络识别MNIST手写数字神经网络模型如图所示:(发现一个画图软件Graphviz 但好像渲染效果一般)代码如下:#结构化代码 把2中的双隐层全连接神经网络放入函数中import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data# MNIST 数据集相关的常数# 输入层的几点疏对于MNIST来说就是是图片展平之后的像素数量INPUT_NODE = 784#
2020-08-01 20:53:40 958 1
原创 tensorflow的一些函数说明
tf.placeholder函数说明dtype——数据类型,如tf.float32,tf.float64shape——数据形状,一维值None,多维[2,3]、[None,3]name——名称placeholder函数意义:placeholder()函数是在神经网络构建graph的时候在模型中的占位,此时并没有把要输入的数据传入模型,它只会分配必要的内存。等建立session,在会话中,运行模型的时候通过feed_dict()函数向占位符喂入数据tf.Variable()函数说明tf
2020-08-01 18:19:08 270
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人