import tensorflow as tf
#
# a = tf.constant([[[1,2],[3,2],[2,2]],[[1,2],[3,2],[2,2]]])
# b = a[:,:,0]
# with tf.Session() as sess:
# print(sess.run(b))
# print(sess.run(tf.reduce_sum(a,1)))
a = [1,2,3,4,5]
b = tf.round(len(a)/2)
print(type(b))
# c = tf.to_int32(b.eval())
with tf.Session() as sess:
print(sess.run(b))
x = b.eval()
print(x)
print(type(x))
b = int(x)
print(b)
d = a[:b]
e = a[b:]
print(d)
print(e)
<class 'tensorflow.python.framework.ops.Tensor'>
2019-05-26 10:48:10.499484: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2.0
2.0
<class 'numpy.float32'>
2
[1, 2]
[3, 4, 5]
当然如果只是想将一个小数变成整数来索引list则不用这么转来转去,
q = round(2.5)
print(type(q))
print(a[:q])
2
<class 'int'>
[1, 2]
但是如果是在sess返回之前转,得在之前的代码里使用 b = tf.to_int32(b)