给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]...k[m-1] 。请问 k[0]*k[1]*...*k[m-1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
示例 1:
输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1
示例 2:
输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36
提示:
2 <= n <= 58
注意:本题与主站 343 题相同:https://leetcode-cn.com/problems/integer-break/
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/jian-sheng-zi-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解答:
这道题我写的时候是抱着找规律的思想去做的,关键是找出最优分割大小3
leetcode 题解区有一位大佬给出了贪心的分析思路,可以参考一下
代码:
public int cuttingRope(int n) {
if (n <= 3) return n-1;
int res = 1;
if (n % 3 == 2) {
res *= 2;
n -= 2;
} else if (n % 3 == 1) {
res *= 4;
n -= 4;
}
while (n != 0) {
n /= 3;
res *= 3;
}
return res;
}
顺便附上剪绳子2 的代码,注意长整型的使用
class Solution {
public int cuttingRope(int n) {
if (n <= 3) return (n - 1);
long res = 1;
if (n % 3 == 1) {
res *= 4;
n -= 4;
} else if (n % 3 == 2) {
res *= 2;
n -= 2;
}
while (n > 0) {
res = res * 3;
n -= 3;
res %= (1e9 + 7);
}
return (int) (res %= (1e9 + 7));
}
}