Java使用PaddleOCR,这可能是Java目前最通用的OCR

RapidOcr-Java

😺 项目起源

  • 现有的JavaOCR工具包识别效果差强人意,PaddleOCR在实现前沿算法的基础上,考虑精度与速度的平衡,进行模型瘦身和深度优化,使其尽可能满足产业落地需求。
  • PaddleOCR官方并未提供Java版本,而RapidOcr解决了这个问题,其提供了Kotlin和Java混合版本的Demo-onnxDemo-ncnn
  • 而实际使用过程中 项目中并不想再引入Kotlin、不想了解OCR相关知识,开箱即用、不想额外再部署OCR服务

因此本项目将Kotlin部分移除,并在此基础上加以完善且提供了更友好的的调用方法,更方便java开发者直接进行使用。

✨如果该项目对您有帮助,您的star是我不断优化的动力!!!

👏 项目特点

  • 纯Java代码调用RapidOcr
  • 集成ncnn和onnx推理引擎方式
  • 均使用CPU版本,GPU版本请自行编译
  • 支持Mac、Windows、Linux等多平台,详细支持的系统请查看版本说明(代码仓库查看)

🎉 快速开始

项目提供了JavaEESpringBoot 的使用Demo,仅作参考(可以拉取下来运行试一下)

1️⃣ 添加依赖

此种方式会根据你使用的系统自动使用对应的jar包,目前支持的系统请查看版本说明

<!--  rapidocr这个必须要引入     -->
<!--  可前往maven中央仓库https://central.sonatype.com/artifact/io.github.mymonstercat/rapidocr/versions,查看版本      -->
<dependency>
    <groupId>io.github.mymonstercat</groupId>
    <artifactId>rapidocr</artifactId>
    <version>0.0.7</version>
</dependency>

<!--  一般只需要引入一个,CPU端建议使用onnx,移动端建议使用ncnn     -->
<!--  可前往maven中央仓库https://central.sonatype.com/artifact/io.github.mymonstercat/rapidocr-onnx-platform/versions,查看版本      -->
<dependency>
    <groupId>io.github.mymonstercat</groupId>
    <artifactId>rapidocr-onnx-platform</artifactId>
    <version>0.0.7</version>
</dependency>

<dependency>
    <groupId>io.github.mymonstercat</groupId>
    <artifactId>rapidocr-ncnn-platform</artifactId>
    <version>0.0.7</version>
</dependency>

2️⃣ 使用示例

public class Main {
    public static void main(String[] args) {
        InferenceEngine engine = InferenceEngine.getInstance(Model.ONNX_PPOCR_V3);
        OcrResult ocrResult = engine.runOcr("/images/test.png");
        System.out.println(ocrResult.getStrRes().trim());
    }
}

更多使用示例请参考使用示例

3️⃣ 添加打印日志(可选)

项目中添加了日志打印,方便打印OCR日志,请自行添加日志实现(springboot自带,可以不用添加)

<!-- 非SpringBoot项目:例如添加slf4j-simple     -->
<dependency>
    <groupId>org.slf4j</groupId>
    <artifactId>slf4j-simple</artifactId>
    <version>2.0.3</version>
</dependency>
<!-- SpringBoot项目:去除依赖,防止冲突     -->
<dependency>
    <groupId>io.github.mymonstercat</groupId>
    <artifactId>rapidocr</artifactId>
    <exclusions>
        <exclusion>
            <artifactId>slf4j-api</artifactId>
            <groupId>org.slf4j</groupId>
        </exclusion>
    </exclusions>
</dependency>

添加后效果如下:

在这里插入图片描述

⚠️ 注意:当前JVM启动时只能同时启动一种推理引擎,以第一次调用runOcr方法时的引擎配置为准

🔝 进阶使用

请前往代码仓库查看

  • 参数调优、版本说明、分支说明
  • 如何打包jar包在Linux系统上运行
  • 如何在CentOS7或其他低版本Linux系统上运行
  • SpringBoot示例和普通Java程序示例
  • JVM下不同PaddleOCR调用方式性能比对👍
  • 银河麒麟v10编译onnx-arm64👍

📌 TODO

  • 根据系统版本自适应加载动态库
  • 动态库集成到jar中
  • 是否删除临时文件夹配置为可选项
  • CentOS7升级指引
  • 添加日志,规范日志打印
  • ONNX支持Mac-Arm64
  • 支持Docker镜像
  • Maven仓库提供packages
  • SpringBoot下,以配置文件方式改造
  • jvm未退出场景连续调用识别结果集乱码#1
  • 集成ONNX#2,感谢nn200433tika-server👏
  • 多模块打包#6
  • 多线程情况下库和模型可能重复加载、编译目标jdk版本改为1.8,感谢FlyInWind1
  • 基于arm64的银河麒麟环境,提供linux-arm64下onnx运行库(编译过程详见进阶使用),感谢sandywalker
  • 添加英语日志,感谢litongjava
  • 支持传入bitmap和image的二进制数据,感谢scvzerng

🤔 FAQ

Q1:CentOS7无法运行?
Q2:如何传入二进制数据,而非图片路径?

由于缺少其他系统的设备,因此暂不提供最新的jar包(也就用v0.0.7传不了二进制),可参考以下步骤自行编译可传入二进制数据的jar包

如果你是mac-arm64的设备,直接 拉取项目->运行测试用例 即可,也就是仅mac-arm64的动态库是支持二进制传入的

Q3:如何使用其他版本(如服务器版本)的模型?
  • 拉取本项目最新代码到本地
  • 该路径下放入模型文件
  • 模型中添加对应的配置
  • 项目执行打包命令
Q4:如何使用其他版本(如服务器版本)的模型?

如有其他问题请提issue,我会尽快解决。

鸣谢

开源许可

使用 Apache License 2.0

出现这个错误的原因是在导入seaborn包时,无法从typing模块中导入名为'Protocol'的对象。 解决这个问题的方法有以下几种: 1. 检查你的Python版本是否符合seaborn包的要求,如果不符合,尝试更新Python版本。 2. 检查你的环境中是否安装了typing_extensions包,如果没有安装,可以使用以下命令安装:pip install typing_extensions。 3. 如果你使用的是Python 3.8版本以下的版本,你可以尝试使用typing_extensions包来代替typing模块来解决该问题。 4. 检查你的代码是否正确导入了seaborn包,并且没有其他导入错误。 5. 如果以上方法都无法解决问题,可以尝试在你的代码中使用其他的可替代包或者更新seaborn包的版本来解决该问题。 总结: 出现ImportError: cannot import name 'Protocol' from 'typing'错误的原因可能是由于Python版本不兼容、缺少typing_extensions包或者导入错误等原因造成的。可以根据具体情况尝试上述方法来解决该问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [ImportError: cannot import name ‘Literal‘ from ‘typing‘ (D:\Anaconda\envs\tensorflow\lib\typing....](https://blog.csdn.net/yuhaix/article/details/124528628)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值