基于布谷鸟哈希算法实现 ExistSet 集合

🌟🌟🌟🌟🌟亲爱的朋友们,热烈欢迎你们来到我的创意编程空间!能与你们在这里相聚,我感到无比激动和荣幸。在这个充满挑战与机遇的时代,我们每个人都在不断追求知识的深度与广度。而我的博客,正是一个激发灵感与分享智慧的乐园。在这里,你们不仅能够发现有趣的编程项目和实用的技术资源,还可以畅所欲言,分享你们的经验与想法。我真诚地期待着你们的到来,愿我们在这片小小的天地里携手前行,共同探索未知的领域。🌟🌟🌟🌟🌟

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

目录

引言

1、布谷鸟哈希算法简介

2、设计亮点

3、ExistSet 类的主要成员变量

 4、核心方法解析

 5、适用场景建议

6、使用示例

7、总结


引言

在软件开发的世界里,高效的数据结构是提升程序性能的关键。今天,我们要深入探讨一个基于布谷鸟哈希算法(Cuckoo Hashing)实现的集合类 ExistSet。这个集合类提供了  O(1) 时间复杂度的查询和删除操作,在处理元素查找和删除需求时具有显著的性能优势。

1、布谷鸟哈希算法简介

布谷鸟哈希算法是一种开放寻址的哈希方法,它使用多个哈希函数和多个哈希表来减少哈希冲突。当一个元素插入时,它会被映射到多个位置,如果这些位置都已被占用,就会像布谷鸟把其他鸟的蛋挤出鸟巢一样,将已有的元素挤出来,被挤出的元素再尝试插入到它的其他可选位置。这种置换过程可能会重复多次,直到所有元素都有合适的位置或者达到最大尝试次数。

2、设计亮点

2.1 双哈希表架构:采用table1/table2双存储结构

2.2 布谷鸟哈希算法:通过元素置换实现高效插入

2.3 自动扩容机制:容量翻倍时保持O(1)访问特性

2.4 预存哈希值:牺牲空间换时间,提升查询效率

3、ExistSet 类的主要成员变量

  • DEFAULT_CAPACITY:默认初始容量,值为 16,且必须是 2 的幂,这样设计有助于在哈希计算时通过位运算快速定位元素位置。
  • MAX_PROBE:最大探测次数,当插入元素时,如果经过 8 次尝试仍无法找到合适的位置,就会触发扩容操作。
  • LOAD_FACTOR:负载因子,值为 0.5f。当集合中的元素数量超过 capacity * LOAD_FACTOR 时,会触发扩容,以保证哈希表的性能。
  • table1 和 table2:两个哈希表,用于存储元素条目。
  • size:当前集合中元素的数量。
  • threshold:扩容阈值,当 size 超过该值时,会调用 resize() 方法进行扩容。
// 默认初始容量,必须是2的幂
private static final int DEFAULT_CAPACITY = 16;
// 最大探测次数,超过则触发扩容
private static final int MAX_PROBE = 8;
// 负载因子,当元素数量超过 capacity * LOAD_FACTOR 时扩容
private static final float LOAD_FACTOR = 0.5f;

// 第一个哈希表,存储条目
private Entry<T>[] table1;
// 第二个哈希表,存储条目
priv
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

网页打不开

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值