实现 pytorch 中 torch.nn.CrossEntropyLoss

本文旨在深入理解pytorch中的CrossEntropyLoss,通过核心代码展示其实现过程。作者介绍了loss的公式,并利用numpy实现了一个类似的类,考虑了weight参数和size_average参数的影响。测试结果显示了实现的正确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

为了更好地理解 pytorch 的 CrossEntropyLoss,于是打算进行简单的实现。

官方文档:
https://pytorch.org/docs/stable/nn.html?highlight=crossentropyloss#torch.nn.CrossEntropyLoss

官网 loss 的公式:
在这里插入图片描述
x 的维度是 (batch_size, C)
class 的维度是 (batch_size)
(这里的 C 是分类的个数)

核心代码

写了一个类,利用 numpy 进行实现

input 对应的是上面公式的 x,target 对应的是 class

核心代码如下(实现公式):

batch_loss = 0.
for i in range(input.shape[0]):
    numerator = np.exp(input[i, target[i]])						# 分子
    denominator = np.sum(np.exp(input[i, :])) 				    # 分母
    loss = -np.log(numerator / denominator)
    batch_loss += loss

上面公式中,两个输入 x,class 分别对应代码里的 input,target。

每一个循环,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值