Spark的学习(二)RDD弹性分布式数据集

目录

一、概念

1、什么是RDD?

2、RDD的弹性

(1)自动进行内存和磁盘数据存储的切换

(2)基于血统的高效容错机制

(3)Task,Stage如果失败会自动进行特定次数的重试

(4)Checkpoint和Persist可主动或被动触发

(5)数据调度弹性

(6)数据分区的高度弹性

3、RDD的属性

4、RDD有什么特点?

二、RDD的创建

1、由一个已经存在的Scala集合创建,集合并行化

2、读取文件生成

3、其他方式

三、RDD算子操作类型

1、transformations

2、Action

四、DAG有向无环图的生成

五、RDD相关概念关系

六、键值对RDD

1、键值对RDD的转换操作

(1)转化操作列表

(2)聚合操作

(3)数据分组

(4)连接

(5)数据排序

2、键值对RDD的行动操作

3、键值对RDD的数据分区

(1)获取RDD分区的方式 

(2)Hash分区方式

(3)Ranger分区方式

(4)自定义分区方式

(5)分区shuffle优化

(6)基于分区进行操作

(7)从分区中获益的操作

七、数据的读取和保存



一、概念


1、什么是RDD?

RDD(Resilient Distributed Dataset)叫做分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变、可分区、弹性、里面的元素可并行计算的集合。在 Spark 中,对数据的所有操作不外乎创建 RDD、转化已有RDD 以及调用 RDD 操作进行求值。每个 RDD 都被分为多个分区,这些分区运行在集群中的不同节点上。

RDD 可以包含 Python、Java、Scala 中任意类型的对象, 甚至可以包含用户自定义的对象。RDD具有数据流模型的特点:自动容错、位置感知性调度和可伸缩性。RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度。

2、RDD的弹性

(1)自动进行内存和磁盘数据存储的切换

    Spark优先把数据放到内存中,如果内存放不下,就会放到磁盘里面,程序进行自动的存储切换

(2)基于血统的高效容错机制

    在RDD进行转换和动作的时候,会形成RDD的Lineage依赖链,当某一个RDD失效的时候,可以通过重新计算上游的RDD来重新生成丢失的RDD数据。

(3)Task,Stage如果失败会自动进行特定次数的重试

如果Job的某个Stage阶段计算失败,框架也会自动进行任务的重新计算,默认次数也是4次。

Spark中的Stage其实就是一组并行的任务,任务是一个个的task 

(4)Checkpoint和Persist可主动或被动触发

 RDD可以通过Persist持久化将RDD缓存到内存或者磁盘,当再次用到该RDD时直接读取就行。也可以将RDD进行检查点,检查点会将数据存储在HDFS中,该RDD的所有父RDD依赖都会被移除。

(5)数据调度弹性

 Spark把这个JOB执行模型抽象为通用的有向无环图DAG,可以将多Stage的任务串联或并行执行,调度引擎自动处理Stage的失败以及Task的失败

(6)数据分区的高度弹性

可以根据业务的特征,动态调整数据分区的个数,提升整体的应用执行效率

3、RDD的属性

  1. 一组分区(Partition),即数据集的基本组成单位;
  2. 一个计算每个分区的函数;
  3. RDD之间的依赖关系;
  4. 一个Partitioner,即RDD的分片函数;
  5. 一个列表,存储存取每个Partition的优先位置(preferred location)。

4、RDD有什么特点?

RDD表示只读的分区的数据集,对RDD进行改动,只能通过RDD的转换操作,由一个RDD得到一个新的RDD,新的RDD包含了从其他RDD衍生所必需的信息。RDDs之间存在依赖,RDD的执行是按照血缘关系延时计算的。如果血缘关系较长,可以通过持久化RDD来切断血缘关系。

(1)分区

RDD逻辑上是分区的,每个分区的数据是抽象存在的,计算的时候会通过一个compute函数得到每个分区的数据。如果RDD是通过已有的文件系统构建,则compute函数是读取指定文件系统中的数据,如果RDD是通过其他RDD转换而来,则compute函数是执行转换逻辑将其他RDD的数据进行转换。

 

(2)只读

如下图所示,RDD是只读的,要想改变RDD中的数据,只能在现有的RDD基础上创建新的RDD

 

 由一个RDD转换到另一个RDD,可以通过丰富的操作算子实现,不再像MapReduce那样只能写map和reduce了,如下图所示。

 

(3)依赖

 

RDDs通过操作算子进行转换,转换得到的新RDD包含了从其他RDDs衍生所必需的信息,RDDs之间维护着这种血缘关系,也称之为依赖。如下图所示,依赖包括两种,一种是窄依赖RDDs之间分区是一一对应的,另一种是宽依赖下游RDD的每个分区与上游RDD(也称之为父RDD)的每个分区都有关,是多对多的关系

 

通过RDDs之间的这种依赖关系,一个任务流可以描述为DAG(有向无环图),如下图所示,在实际执行过程中宽依赖对应于Shuffle(图中的reduceByKey和join),窄依赖中的所有转换操作可以通过类似于管道的方式一气呵成执行(图中map和union可以一起执行)。

 

 

(4)缓存

如果在应用程序中多次使用同一个RDD,可以将该RDD缓存起来,该RDD只有在第一次计算的时候会根据血缘关系得到分区的数据,在后续其他地方用到该RDD的时候,会直接从缓存处取而不用再根据血缘关系计算,这样就加速后期的重用。如下图所示,RDD-1经过一系列的转换后得到RDD-n并保存到hdfs,RDD-1在这一过程中会有个中间结果,如果将其缓存到内存,那么在随后的RDD-1转换到RDD-m这一过程中,就不会计算其之前的RDD-0了。

 

(5)CheckPoint

虽然RDD的血缘关系天然地可以实现容错,当RDD的某个分区数据失败或丢失,可以通过血缘关系重建。但是对于长时间迭代型应用来说,随着迭代的进行,RDDs之间的血缘关系会越来越长,一旦在后续迭代过程中出错,则需要通过非常长的血缘关系去重建,势必影响性能。为此,RDD支持checkpoint将数据保存到持久化的存储中,这样就可以切断之前的血缘关系,因为checkpoint后的RDD不需要知道它的父RDDs了,它可以从checkpoint处拿到数据

给定一个RDD我们至少可以知道如下几点信息:1、分区数以及分区方式;2、由父RDDs衍生而来的相关依赖信息;3、计算每个分区的数据,计算步骤为:1)如果被缓存,则从缓存中取的分区的数据;2)如果被checkpoint,则从checkpoint处恢复数据;3)根据血缘关系计算分区的数据。

二、RDD的创建

1、由一个已经存在的Scala集合创建,集合并行化

从集合中创建RDD,Spark主要提供了两种函数:parallelize和makeRDD

2、读取文件生成

可以从Hadoop支持的任何存储源创建分布式数据集,包括本地文件系统,HDFS,Cassandra,HBase等

scala> val file = sc.textFile("/spark/hello.txt")

3、其他方式

读取数据库等等其他的操作。也可以生成RDD。

RDD可以通过其他的RDD转换而来的

三、RDD算子操作类型

RDD的操作算子包括两类,一类叫做transformations它是用来将RDD进行转化,构建RDD的血缘关系;另一类叫做actions,它是用来触发RDD的计算,得到RDD的相关计算结果或者将RDD保存的文件系统中

1、transformations

Transformation主要做的是就是将一个已有的RDD生成另外一个RDD。Transformation具有lazy特性(延迟加载)。Transformation算子的代码不会真正被执行。只有当我们的程序里面遇到一个action算子的时候,代码才会真正的被执行。这种设计让Spark更加有效率地运行。

转换

含义

map(func)

返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成

filter(func)

返回一个新的RDD,该RDD由经过func函数计算后返回值为true的输入元素组成

flatMap(func)

类似于map,但是每一个输入元素可以被映射为0或多个输出元素(所以func应该返回一个序列,而不是单一元素)

mapPartitions(func)

类似于map,但独立地在RDD的每一个分区上运行,因此在类型为T的RDD上运行时,func的函数类型必须是Iterator[T] => Iterator[U]

mapPartitionsWithIndex(func)

类似于mapPartitions,但func带有一个整数参数表示分区的索引值,因此在类型为T的RDD上运行时,func的函数类型必须是

(Int, Interator[T]) => Iterator[U]

union(otherDataset)

对源RDD和参数RDD求并集后返回一个新的RDD

intersection(otherDataset)

对源RDD和参数RDD求交集后返回一个新的RDD(交集)

distinct([numTasks]))

对源RDD进行去重后返回一个新的RDD

groupByKey([numTasks])

在一个(K,V)的RDD上调用,返回一个(K, Iterator[V])的RDD

reduceByKey(func, [numTasks])

在一个(K,V)的RDD上调用,返回一个(K,V)的RDD,使用指定的reduce函数,将相同key的值聚合到一起,与groupByKey类似,reduce任务的个数可以通过第二个可选的参数来设置

aggregateByKey(zeroValue)(seqOp, combOp, [numTasks])

先按分区聚合 再总的聚合   每次要跟初始值交流 例如:aggregateByKey(0)(_+_,_+_) 对k/y的RDD进行操作

sortByKey([ascending], [numTasks])

在一个(K,V)的RDD上调用,K必须实现Ordered接口,返回一个按照key进行排序的(K,V)的RDD

sortBy(func,[ascending], [numTasks])

与sortByKey类似,但是更灵活 第一个参数是根据什么排序  第二个是怎么排序 false倒序   第三个排序后分区数  默认与原RDD一样

join(otherDataset, [numTasks])

在类型为(K,V)和(K,W)的RDD上调用,返回一个相同key对应的所有元素对在一起的(K,(V,W))的RDD  相当于内连接(求交集)

cogroup(otherDataset, [numTasks])

在类型为(K,V)和(K,W)的RDD上调用,返回一个(K,(Iterable<V>,Iterable<W>))类型的RDD

cartesian(otherDataset)

两个RDD的笛卡尔积  的成很多个K/V

coalesce(numPartitions)   

重新分区 第一个参数是要分多少区,第二个参数是否shuffle 默认false  少分区变多分区 true   多分区变少分区 false

repartition(numPartitions)

重新分区 必须shuffle  参数是要分多少区  少变多

foldByKey(zeroValue)(seqOp)

该函数用于K/V做折叠,合并处理 ,与aggregate类似   第一个括号的参数应用于每个V值  第二括号函数是聚合例如:_+_

combineByKey

合并相同的key的值 rdd1.combineByKey(x => x, (a: Int, b: Int) => a + b, (m: Int, n: Int) => m + n)

partitionBy(partitioner)

对RDD进行分区  partitioner是分区器 例如new HashPartition(2

cache

RDD缓存,可以避免重复计算从而减少时间,区别:cache内部调用了persist算子,cache默认就一个缓存级别MEMORY-ONLY ,而persist则可以选择缓存级别

persist

Subtract(rdd)

返回前rdd元素不在后rdd的rdd(差集)

leftOuterJoin

leftOuterJoin类似于SQL中的左外关联left outer join,返回结果以前面的RDD为主,关联不上的记录为空。只能用于两个RDD之间的关联,如果要多个RDD关联,多关联几次即可。

rightOuterJoin

rightOuterJoin类似于SQL中的有外关联right outer join,返回结果以参数中的RDD为主,关联不上的记录为空。只能用于两个RDD之间的关联,如果要多个RDD关联,多关联几次即可

subtractByKey

substractByKey和基本转换操作中的subtract类似只不过这里是针对K的,返回在主RDD中出现,并且不在otherRDD中出现的元素

2、Action

触发代码的运行,我们一段spark代码里面至少需要有一个action操作。

动作

 

 

含义

reduce(func)

 

 

通过func函数聚集RDD中的所有元素,这个功能必须是课交换且可并联的

collect()

 

 

在驱动程序中,以数组的形式返回数据集的所有元素

count()

 

 

返回RDD的元素个数

first()

 

 

返回RDD的第一个元素(类似于take(1))

take(n)

 

 

返回一个由数据集的前n个元素组成的数组

takeSample(withReplacement,num, [seed])

 

 

返回一个数组,该数组由从数据集中随机采样的num个元素组成,可以选择是否用随机数替换不足的部分,seed用于指定随机数生成器种子

takeOrdered(n[ordering])

 

 

使用自然顺序或自定义比较器返回RDD 的前n个元素。

saveAsTextFile(path)

 

 

将数据集的元素以textfile的形式保存到HDFS文件系统或者其他支持的文件系统,对于每个元素,Spark将会调用toString方法,将它装换为文件中的文本

saveAsSequenceFile(path

 

 

将数据集中的元素以Hadoop sequencefile的格式保存到指定的目录下,可以使HDFS或者其他Hadoop支持的文件系统。

saveAsObjectFile(path

 

 

使用Java序列化以简单格式编写数据集的元素,然后可以使用Java序列化加载SparkContext.objectFile()。 

countByKey()

 

 

针对(K,V)类型的RDD,返回一个(K,Int)的map,表示每一个key对应的元素个数。

foreach(func)

 

 

在数据集的每一个元素上,运行函数func进行更新。

 

四、DAG有向无环图的生成

DAG(Directed Acyclic Graph)叫做有向无环图,原始的RDD通过一系列的转换就就形成了DAG,根据RDD之间的依赖关系的不同将DAG划分成不同的Stage,对于窄依赖,partition的转换处理在Stage中完成计算对于宽依赖,由于有Shuffle的存在,只能在parent RDD处理完成后,才能开始接下来的计算,因此宽依赖是划分Stage的依据

五、RDD相关概念关系

输入可能以多个文件的形式存储在HDFS上,每个File都包含了很多块,称为Block。当Spark读取这些文件作为输入时,会根据具体数据格式对应的InputFormat进行解析,一般是将若干个Block合并成一个输入分区,称为InputSplit,注意InputSplit不能跨越文件。随后将为这些输入分区生成具体的Task。InputSplit与Task是一一对应的关系。随后这些具体的Task每个都会被分配到集群上的某个节点的某个Executor去执行。

  1. 每个节点可以起一个或多个Executor。
  2. 每个Executor由若干core组成,每个Executor的每个core一次只能执行一个Task。
  3. 每个Task执行的结果就是生成了目标RDD的一个partiton。

注意: 这里的core是虚拟的core而不是机器的物理CPU核,可以理解为就是Executor的一个工作线程。而 Task被执行的并发度 = Executor数目 * 每个Executor核数。至于partition的数目:

  1. 对于数据读入阶段,例如sc.textFile,输入文件被划分为多少InputSplit就会需要多少初始Task。
  2. 在Map阶段partition数目保持不变。
  3. 在Reduce阶段,RDD的聚合会触发shuffle操作,聚合后的RDD的partition数目跟具体操作有关,例如repartition操作会聚合成指定分区数,还有一些算子是可配置的。

RDD在计算的时候,每个分区都会起一个task,所以rdd的分区数目决定了总的的task数目。申请的计算节点(Executor)数目和每个计算节点核数,决定了你同一时刻可以并行执行的task。

六、键值对RDD

1、键值对RDD的转换操作

(1)转化操作列表

(2)聚合操作

      reduceByKey() 与 reduce() 相当类似;它们都接收一个函数,并使用该函数对值进行合并。reduceByKey() 会为数据集中的每个键进行并行的归约操作,每个归约操作会将键相同的值合 并起来。因为数据集中可能有大量的键,所以 reduceByKey() 没有被实现为向用户程序返回一个值的行动操作。实际上,它会返回一个由各键和对应键归约出来的结果值组成的新的RDD。

       foldByKey() 则与 fold() 相当类似;它们都使用一个与 RDD 和合并函数中的数据类型相 同的零值作为初始值。与 fold() 一样,foldByKey() 操作所使用的合并函数对零值与另一 个元素进行合并,结果仍为该元素

求均值操作:版本一

input.mapValues(x => (x, 1)).reduceByKey((x, y) => (x._1 + y._1, x._2 + y._2)).map{ case (key, value) => (key, value._1 / value._2.toFloat) }

combineByKey是针对不同partition进行操作的。它的第一个参数用于数据初始化,第二个是针对一个partition的combine操作函数,第三个是在所有partition都combine完毕后,针对所有临时结果进行combine操作的函数。

求均值:版本二

val result = input.combineByKey(
  (v) => (v, 1),
  (acc: (Int, Int), v) => (acc._1 + v, acc._2 + 1),
  (acc1: (Int, Int), acc2: (Int, Int)) => (acc1._1 + acc2._1, acc1._2 + acc2._2)
).map{ case (key, value) => (key, value._1 / value._2.toFloat) }


result.collectAsMap().map(println(_))

(3)数据分组

   如果数据已经以预期的方式提取了键,groupByKey() 就会使用 RDD 中的键来对数据进行 分组。对于一个由类型 K 的键和类型 V 的值组成的 RDD,所得到的结果 RDD 类型会是 [K, Iterable[V]]。

   groupBy() 可以用于未成对的数据上,也可以根据除键相同以外的条件进行分组。它可以 接收一个函数,对源 RDD 中的每个元素使用该函数,将返回结果作为键再进行分组。

(4)连接

    连接主要用于多个Pair RDD的操作,连接方式多种多样:右外连接、左外连接、交 叉连接以及内连接。

普通的 join 操作符表示内连接 2。只有在两个 pair RDD 中都存在的键才叫输出。当一个输 入对应的某个键有多个值时,生成的pair RDD会包括来自两个输入RDD的每一组相对应 的记录。

      leftOuterJoin()产生的pair RDD中,源RDD的每一个键都有对应的记录。每个 键相应的值是由一个源 RDD 中的值与一个包含第二个 RDD 的值的 Option(在 Java 中为 Optional)对象组成的二元组。

      rightOuterJoin() 几乎与 leftOuterJoin() 完全一样,只不过预期结果中的键必须出现在 第二个 RDD 中,而二元组中的可缺失的部分则来自于源 RDD 而非第二个 RDD。

(5)数据排序

sortByKey() 函数接收一个叫作 ascending 的参数,表示我们是否想要让结果按升序排序(默认值为 true)。

2、键值对RDD的行动操作

3、键值对RDD的数据分区

Spark目前支持Hash分区和Range分区,用户也可以自定义分区Hash分区为当前的默认分区,Spark中分区器直接决定了RDD中分区的个数、RDD中每条数据经过Shuffle过程属于哪个分区和Reduce的个数,注意:

a.只有Key-Value类型的RDD才有分区的非Key-Value类型的RDD分区的值是None
b.每个RDD的分区ID范围:0~numPartitions-1,决定这个值是属于那个分区的。

(1)获取RDD分区的方式 

可以通过使用RDD的partitioner 属性来获取 RDD 的分区方式。它会返回一个 scala.Option 对象, 通过get方法获取其中的值。

(2)Hash分区方式

HashPartitioner分区的原理:对于给定的key,计算其hashCode,并除于分区的个数取余,如果余数小于0,则用余数+分区的个数,最后返回的值就是这个key所属的分区ID。

scala> nopar.partitioner

res20: Option[org.apache.spark.Partitioner] = None

scala> val nopar = sc.parallelize(List((1,3),(1,2),(2,4),(2,3),(3,6),(3,8)),8)

nopar: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[10] at parallelize at <console>:24

scala>nopar.mapPartitionsWithIndex((index,iter)=>{ Iterator(index.toString+" : "+iter.mkString("|")) }).collect

res0: Array[String] = Array("0 : ", 1 : (1,3), 2 : (1,2), 3 : (2,4), "4 : ", 5 : (2,3), 6 : (3,6), 7 : (3,8))

scala> val hashpar = nopar.partitionBy(new org.apache.spark.HashPartitioner(7))

hashpar: org.apache.spark.rdd.RDD[(Int, Int)] = ShuffledRDD[12] at partitionBy at <console>:26

scala> hashpar.count

res18: Long = 6

scala> hashpar.partitioner

res21: Option[org.apache.spark.Partitioner] = Some(org.apache.spark.HashPartitioner@7)

scala> hashpar.mapPartitions(iter => Iterator(iter.length)).collect()

res19: Array[Int] = Array(0, 3, 1, 2, 0, 0, 0)

(3)Ranger分区方式

HashPartitioner分区弊端:可能导致每个分区中数据量的不均匀,极端情况下会导致某些分区拥有RDD的全部数据。

RangePartitioner分区优势:尽量保证每个分区中数据量的均匀,而且分区与分区之间是有序的,一个分区中的元素肯定都是比另一个分区内的元素小或者大;

但是分区内的元素是不能保证顺序的。简单的说就是将一定范围内的数映射到某一个分区内。

RangePartitioner作用:将一定范围内的数映射到某一个分区内,在实现中,分界的算法尤为重要。用到了水塘抽样算法。

(4)自定义分区方式

要实现自定义的分区器,你需要继承 org.apache.spark.Partitioner 类并实现下面三个方法。

numPartitions: Int:返回创建出来的分区数。

getPartition(key: Any): Int:返回给定键的分区编号(0到numPartitions-1)。

equals():Java判断相等性的标准方法。这个方法的实现非常重要,Spark 需要用这个方法来检查你的分区器对象是否和其他分区器实例相同,这样 Spark 才可以判断两个 RDD 的分区方式是否相同。

假设我们需要将相同后缀的数据写入相同的文件,我们通过将相同后缀的数据分区到相同的分区并保存输出来实现。

使用自定义的 Partitioner 是很容易的:只要把它传给 partitionBy() 方法即可。Spark 中有许多依赖于数据混洗的方法,比如 join() 和 groupByKey(),它们也可以接收一个可选的 Partitioner 对象来控制输出数据的分区方式。

(5)分区shuffle优化

在分布式程序中, 通信的代价是很大的,因此控制数据分布以获得最少的网络传输可以极大地提升整体性能。

Spark 中所有的键值对 RDD 都可以进行分区。系统会根据一个针对键的函数对元素进行分组。 主要有哈希分区和范围分区,当然用户也可以自定义分区函数。

(6)基于分区进行操作

基于分区对数据进行操作可以让我们避免为每个数据元素进行重复的配置工作。诸如打开数据库连接或创建随机数生成器等操作,都是我们应当尽量避免为每个元素都配置一次的工作。Spark 提供基于分区的 mapPartition 和 foreachPartition,让你的部分代码只对 RDD 的每个分区运行 一次,这样可以帮助降低这些操作的代价。

(7)从分区中获益的操作

能够从数据分区中获得性能提升的操作有cogroup()、 groupWith()、join()、leftOuterJoin()、rightOuterJoin()、groupByKey()、reduceByKey()、 combineByKey() 以及 lookup()等

七、数据的读取和保存

当我们将一个文本文件读取为 RDD 时,输入的每一行 都会成为RDD的一个元素。也可以将多个完整的文本文件一次性读取为一个pair RDD, 其中键是文件名,值是文件内容。

val input = sc.textFile("./README.md")

如果传递目录,则将目录下的所有文件读取作为RDD。

文件路径支持通配符。

通过wholeTextFiles()对于大量的小文件读取效率比较高,大文件效果没有那么高。

Spark通过saveAsTextFile() 进行文本文件的输出,该方法接收一个路径,并将 RDD 中的内容都输入到路径对应的文件中。Spark 将传入的路径作为目录对待,会在那个 目录下输出多个文件。这样,Spark 就可以从多个节点上并行输出了。

result.saveAsTextFile(outputFile)

scala> sc.textFile("./README.md")

res6: org.apache.spark.rdd.RDD[String] = ./README.md MapPartitionsRDD[7] at textFile at <console>:25

scala> val readme = sc.textFile("./README.md")

readme: org.apache.spark.rdd.RDD[String] = ./README.md MapPartitionsRDD[9] at textFile at <console>:24

scala> readme.collect()

res7: Array[String] = Array(# Apache Spark, "", Spark is a fast and general cluster...

scala> readme.saveAsTextFile("hdfs://master01:9000/test")

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值