- 博客(15)
- 收藏
- 关注
原创 感知机
感知机特点:(1)二类分类线性模型。 (2)输入为实例的特征向量,输出为实例的类别。(3)导入基于误分类的损失函数。(4)利用梯度下降法对损失函数进行极小化。感知机定义:假设输入空间(特征空间)是X包含于R”,输出空间是Y={-1,+1}。 输入x属于X表示实例的特征向量,对应于输入空间(特征空间)的点,输出y属于Y表示实例的类别。由输入空间到输出空间的如下函数这个函数就称为感知机。其中,w和b是感知机模型参数,w属于R”叫作权值或权值向量,b属于R叫作偏置,wx表示w和x的内积。sign是符号函数。
2021-03-29 12:55:19 352
转载 主成分分析(PCA)原理详解
主成分分析(PCA)原理详解原文地址:https://mp.weixin.qq.com/s?src=3×tamp=1599035409&ver=1&signature=wIOst3f1PiZhG8igzlTmxhrJhZLHx5WG3ydQ7QH6uHwxde-7m6B8cmKRLhwliErp5r38c1nz4wIniKkqVBHKq9XVb9jJ40I6CgMRpQW7HCThCbwKsUMap06Pai1Hp3FmYGm4lEZ4wqy85S1iV50EmTtdni
2020-09-02 16:50:16 491
原创 CSS简单用法
li{list-style-type: none;/隐藏列表的小点/}/span {width:60px; text-align:center; display:block; float:left;}/.title{font-family: Arial, Helvetica, sans-serif;font-size: 20px;color: rgb(97, 11, 236);/*...
2020-09-02 16:15:21 157
转载 财经数据分析第一周笔记
https://blog.csdn.net/TiAmo17/article/details/104414279/数据挖掘任务主要分为两种:描述性任务和预测性任务1.描述性任务定义:描述性任务将发掘数据中潜在的规律,找出目前可以理解与描述数据集中数据之间的联系,并刻画数据集中数据的一般特性。描述性任务一般采用的挖掘步骤:业务理解、数据理解、数据准备(即对数据进行预处理、生成相关特征)、模型建...
2020-09-02 16:14:48 235
原创 虚拟地址与物理地址
页表记录着逻辑页号与物理页号的映射关系的,页表是会动态变化的。添加链接描述页表首地址存放在%cr3寄存器中,系统启动时,会自动获取页表首地址。...
2020-09-02 16:14:07 198
原创 SPSS Modeler数据分析
有时候,导入数据的时候会发现读取值突然变成无类型,这个时候,找到对应的流,单击右键选择属性,去勾选那个“名义字段的最大数量”就可以正常读取。其实SPSS Modeler工具不好用,数据量稍大一点就不能工作。在编写word报告的时候还发现,有时候复制粘贴截图,图片会乱跑,主要有两个原因。1、图片应该设置为嵌入型2、行间距不能为固定值,重新设为1.5倍或单倍行距都可以。...
2020-09-02 16:13:40 1482
原创 快速理解主成分分析PCA以及特征值和特征向量的意义
主成分分析PCA以及特征值和特征向量的意义原文链接主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。PCA的思想是将n维特征映射到k维上(k<n),这k维是全新的正交特征。这k维特征称为主成分,是重新构造出来的k维特征,而不是简单地从n维特征中去除其余n-k维特征。简单解释:具体的,假如我们的数据集是n维的,共有m个数据。我们希望将这m个数据的维度从n维降
2020-09-02 16:07:04 5864
原创 简单理解什么是机器学习
机器学习(一)何为机器学习?机器学习赋予计算机学习的能力,这种能力是通过非显著式编程获得的。非显著式编程是指事先不约束计算机的学习框架,让计算机通过例子自己总结特征和规律。四个经典的机器学习任务可以了解一下:1、教计算机下棋2、垃圾邮件识别,教计算机自动识别某个邮件是垃圾邮件3、人脸识别,教计算机通过人脸的图像识别这个人是谁4、无人驾驶,教计算机自动驾驶汽车从一个指定地点到另一个指定地点机器学习的分类1、监督学习(分类和回归)(1)传统的监督学习算法有:支持向量机、人工神经网络、深度
2020-06-28 11:28:25 546
转载 数据分析过拟合与欠拟合
Overfitting定义:在训练集上表现良好,在测试集上表现糟糕产生原因: 1.训练集和测试集特征分布不一致 2.数据噪声太大 3.数据量太小 4.特征量太多 5.模型太过复杂解决方法: 1.减少特征数量 2.正则化 3.增大样本训练规模 4.简化模型 5.交叉验证 6.dropout Underfitting定义:在训练集...
2020-03-08 21:54:46 288
原创 HDFS文件系统的根目录和用户主目录解析
HDFS文件系统的根目录和用户主目录分别是什么?根据这四个截图,你能得出什么结论?HDFS文件系统的根目录是/,用户主目录是/user/[hadoop用户名]根据上面的截图,所有的文件都放在根目录及其子目录下。/tmp用于hadoop操作的临时存储,/user下的是用户空间,/data在截图中/data/input应该是存放从本地上传至HDFS文件系统的文件,/data/output应该...
2020-03-05 09:20:56 15392
原创 dfs.namenode.name.dir 和dfs.datanode.data.dir目录
dfs.namenode.name.dir 和dfs.datanode.data.dir分别是什么目录?dfs.namenode.name.dir 和dfs.datanode.data.dir分别是什么目录?有何作用?我们可以在本地文件系统中找到HDFS文件系统中文件或目录的位置吗?我们可以在本地文件系统的以上两个目录中找到HDFS文件系统中某个具体的文件或目录的位置吗?是否存在一一映射的关系...
2020-03-05 09:17:59 6703
原创 MapReduce为什么要有自定义的数据类型
MapReduce数据类型数据类型都要实现Writable接口,以便用这些类型定义的数据可以被序列化进行网络传输和文件存储,也就是它要进行序列化和反序列化。自定义key数据类型的时候,因为需要对key进行排序,需要继承java中的比较器,所以可以直接继承WritableComparable(WritableComparable继承了Writable和Comparable)。基本数据类型:Bo...
2020-03-05 09:12:40 310
原创 简单理解什么是回调函数
回调可以是同步的也可以是异步的。同步回调:把函数b传给函数a。执行a的时候,回调了b,a要一直等到b执行完才能继续执行。异步回调:把函数b传给函数a。执行a的时候,回调了b,然后a继续往后执行,b独自执行。具体例子如下:/*同步回调*/function a(callback){ console.log('开始执行函数a'); console.log('开始执行回调b');...
2020-03-02 21:00:09 162
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人