大数据分布式文件系统应用,阿里内部工程师整理,想学的可以看看

学习大数据,学什么?怎么学?今天给大家分享的文章就是分布式文件系统的高级特性及实战应用,各位大数据学习者都可以来看看。

大数据分布式文件系统应用,阿里内部工程师整理,想学的可以看看

大数据、hadoop、Python学习资料分享群 596471005 不管你是小白还是大牛,小编我都挺欢迎,今天的源码已经上传到群文件,不定期分享干货,

包括我自己整理的一份最新的适合2018年学习的大数据开发和零基础入门教程,欢迎初学和进阶中的小伙伴。也可以关注我。

1、原理和运行机制、体系结构(最重要)

2、搭建实验环境,动手

3、编程:实现大数据的处理(Java、Scala)

============================================

一、什么是大数据?大数据处理的核心问题

1、什么是大数据?

举例:(1)商品推荐:问题1:大量的订单如何存储?

问题2:大量的订单如何计算?

(2)天气预报:问题1:大量的天气数据如何存储?

问题2:大量的天气数据如何计算?

2、大数据处理的核心问题

(1)数据的存储 -----> 今天晚上的重点

(2)数据的计算: mapreduce

3、Hadoop和Spark:一般来说,数据都是存在HDFS中

二、什么是分布式文件系统(大数据的存储)

1、Google的论文:GFS(google file system)

2、画图:分布式文件系统的原理

3、Hadoop的安装方式

(1)本地模式: 1台

(2)伪分布模式: 1台

(3)全分布模式:至少3台

三、Hadoop的文件系统:HDFS

1、Demo:操作使用HDFS(伪分布)

2、组成HDFS的组件

(1)NameNode 名称节点

(2)DataNode 数据节点

(3)SecondaryNameNode:第二名称节点

3、项目实战:开发一个客户端,完成数据的上传

依赖的jar包:

$HADOOP_HOME 代表Hadoop的安装目录

$HADOOP_HOME/share/hadoop/common/*.jar

$HADOOP_HOME/share/hadoop/common/lib/*.jar

$HADOOP_HOME/share/hadoop/hdfs/*.jar

$HADOOP_HOME/share/hadoop/hdfs/lib/*.jar

TFS(Taobao FileSystem)是一个高可扩展、高可用、高性能、面向互联网服务的分布式文件系统,其设计目标是支持海量的非结构化数据。 目前,国内自主研发的文件系统可谓凤毛麟角。淘宝在这一领域做了有效的探索和实践,Taobao File System(TFS)作为淘宝内部使用的分布式文件系统,针对海量小文件的随机读写访问性能做了特殊优化,承载着淘宝主站所有图片、商品描述等数据存储。 文章首先概括了TFS的特点:最近,淘宝核心系统团队工程师楚材(李震)在其官方博客上撰文(《TFS简介》,以下简称文章)简要介绍了TFS系统的基本情况,引起了社区的关注。 完全扁平化的数据组织结构,抛弃了传统文件系统的目录结构。 在块设备基础上建立自有的文件系统,减少EXT3等文件系统数据碎片带来的性能损耗。 单进程管理单块磁盘的方式,摒除RAID5机制。 带有HA机制的中央控制节点,在安全稳定和性能复杂度之间取得平衡。 尽量缩减元数据大小,将元数据全部加载入内存,提升访问速度。 跨机架和IDC的负载均衡和冗余安全策略。 完全平滑扩容。 当前,TFS在淘宝的应用规模达到“数百台PCServer,PB级数据量,百亿数据级别”,对于其性能参数,楚材透漏: TFS在淘宝的部署环境中前端有两层缓冲,到达TFS系统的请求非常离散,所以TFS内部是没有任何数据的内存缓冲的,包括传统文件系统的内存缓冲也不存在......基本上我们可以达到单块磁盘随机IOPS(即I/O per second)理论最大值的60%左右,整机的输出随盘数增加而线性增加。 TFS的逻辑架构图1如下所示: 图1. TFS逻辑架构图(来源:淘宝核心系统团队博客) 楚材结合架构图做了进一步说明: TFS尚未对最终用户提供传统文件系统API,需要通过TFSClient进行接口访问,现有JAVA、JNI、C、PHP的客户端 TFS的NameServer作为中心控制节点,监控所有数据节点的运行状况,负责读写调度的负载均衡,同时管理一级元数据用来帮助客户端定位需要访问的数据节点 TFS的DataServer作为数据节点,负责数据实际发生的负载均衡和数据冗余,同时管理二级元数据帮助客户端获取真实的业务数据。 标签:分布式  阿里巴巴
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值