acwing数学知识模板-质数与约数-java版本

质数与约数目录



一、质数

1、试除法求质数

模板

时间复杂度一定是O(sqrt(n))

boolean is_prime(int n ){
        if(n < 2 ) return false;
        for(int i = 2 ; i <= n /i ; i ++){
            if(n % i == 0 ) return false;
        }
        return true ;
    }

原题

在这里插入图片描述

代码

import java.util.*;
public class Main{
    public static void main(String[] args){
        Scanner scan = new Scanner(System.in);
        int n = scan.nextInt();
        while(n-- >  0){
            int m  = scan.nextInt();
           if(is_prime(m)) System.out.println("Yes");
           else System.out.println("No");
        }
    }
   static boolean is_prime(int n ){
        if(n < 2 ) return false;
        for(int i = 2 ; i <= n /i ; i ++){
            if(n % i == 0 ) return false;
        }
        return true ;
    }
}

2、分解质因数

模板

void divide(int n ){        
        for(int i = 2 ; i <= n /i ; i ++){
            if(n % i == 0 ) {//i一定是质数 这大括号是求i的次数
                int s = 0 ; 
                while(n % i == 0 ){
                    n /= i ;
                    s++;
                }
                System.out.println(i +" "+s);
            }
        }
        //n当中最多只包含一个大于根号n的质数
        //所以最后循环结束 加1就可以了
        if(n > 1) System.out.println( n  +" "+ 1);
        System.out.println();
    }

原题

在这里插入图片描述

代码

import java.util.*;
public class Main{
    public static void main(String[] args){
        Scanner scan = new Scanner(System.in);
        int n = scan.nextInt();
        while(n-- >  0){
            int m  = scan.nextInt();
            divide(m);
        }
    }
   static void divide(int n ){        
        for(int i = 2 ; i <= n /i ; i ++){
            if(n % i == 0 ) {
                int s = 0 ; 
                while(n % i == 0 ){
                    n /= i ;
                    s++;
                }
                System.out.println(i +" "+s);
            }
        }
        if(n > 1) System.out.println( n  +" "+ 1);
        System.out.println();
    }
}

3、筛质数(线性筛法)

模板

n只会被最小质因子筛掉
p[]用来存放质数 st[]为质数则false

void get_p(int n ){//用的是线性筛法
        for(int i = 2 ; i <= n ; i++){//循环所有数
            if(!st[i]) p[cnt++] = i ;
            for(int j = 0 ; p[j] <= n / i ; j++){
                st[p[j]*i] = true;//
                if(i % p[j] == 0) break ;
            }
        }
    }

原题

在这里插入图片描述

代码

 
import java.util.Scanner;
public class Main{
    static int cnt =0 ;
    static int N = (int)1e6+10;
    static boolean [] st = new boolean[N];
    static int [] p = new int[N];
    public static void main(String [] args){
        Scanner san = new Scanner(System.in);
        int n = san.nextInt();
        get_p(n);
        System.out.println(cnt);
    }
    static void get_p(int n ){//用的是线性筛法
        for(int i = 2 ; i <= n ; i++){//循环所有数
            if(!st[i]) p[cnt++] = i ;
            for(int j = 0 ; p[j] <= n / i ; j++){
                st[p[j]*i] = true;
                if(i % p[j] == 0) break ;
            }
        }
    }
}
 




  

二、约数

在这里插入图片描述

1.试除法求约数

模板

 List<Integer> res = new ArrayList<>();
        for(int i = 1 ; i <= n /i ; i++){
            if(n % i == 0){
                res.add(i);
                //这里特判一下,因为约数有可能是两个约数相同,比如4*4,5*5,它本只有一个约数,所以就要特判一下
                if(i != n / i) res.add(n/i);
            }
        }
        Collections.sort(res);

原题

在这里插入图片描述

代码

import java.util.*;
public class Main{
     
    public static void main(String [] args){
        Scanner san = new Scanner(System.in);
        int n = san.nextInt();
         while(n-- > 0){
             int m = san.nextInt();
             disor(m);
         }
    }
    public static void disor(int n ){
        List<Integer> res = new ArrayList<>();
        for(int i = 1 ; i <= n /i ; i++){
            if(n % i == 0){
                res.add(i);
                //这里特判一下,因为约数有可能是两个约数相同,比如4*4,5*5,它本只有一个约数,所以就要特判一下
                if(i != n / i) res.add(n/i);
            }
        }
        Collections.sort(res);
        for(int i : res){
            System.out.print(i + " ");
        }
        System.out.println();
         
    }
}
 


2.约数个数

模板

在这里插入图片描述

 Map<Integer,Integer> map = new HashMap<>();
         while(n-- > 0){
             int m = san.nextInt();
             for(int i = 2 ; i <= m / i ; i++){//分解质因数的模板
                 while(m % i == 0 ){
                     m /= i ;
                     map.put(i , map.getOrDefault(i , 0) + 1);
                 }
             }
             if(m > 1)   map.put(m , map.getOrDefault(m , 0) + 1);
         }
         //求个数
         long res = 1 ; 
         for(int key : map.values()){
             res = res * (key + 1) % N ;
         }
          System.out.println(res);

原题

在这里插入图片描述

代码

import java.util.*;
public class Main{
       static int N = (int)1e9 + 7;
    public static void main(String [] args){
        Scanner san = new Scanner(System.in);
        int n = san.nextInt();
        Map<Integer,Integer> map = new HashMap<>();
         while(n-- > 0){
             int m = san.nextInt();
             for(int i = 2 ; i <= m / i ; i++){//分解质因数的模板
                 while(m % i == 0 ){
                     m /= i ;
                     map.put(i , map.getOrDefault(i , 0) + 1);
                 }
             }
             if(m > 1)   map.put(m , map.getOrDefault(m , 0) + 1);
         }
         long res = 1 ; 
         for(int key : map.values()){
             res = res * (key + 1) % N ;
         }
          System.out.println(res);
    }
   
}
 


3、约数之和

模板

在这里插入图片描述
运用秦九韶算法 在这里插入图片描述

  long res = 1 ; 
         for(int k : map.keySet()){
             int a = map.get(k);
             long t = 1 ;
             while(a-- > 0){//执行指数a次
                t = (k * t + 1) % N;//t乘底数
             }
             res = res * t % N ;
         }
         System.out.println(res);

原题

在这里插入图片描述

代码

import java.util.*;
public class Main{
       static int N = (int)1e9 + 7;
    public static void main(String [] args){
        Scanner san = new Scanner(System.in);
        int n = san.nextInt();
        Map<Integer,Integer> map = new HashMap<>();
         while(n-- > 0){
             int m = san.nextInt();
             for(int i = 2 ; i <= m / i ; i++){//分解质因数的模板
                 while(m % i == 0 ){
                     m /= i ;
                     map.put(i , map.getOrDefault(i , 0) + 1);
                 }
             }
             if(m > 1)   map.put(m , map.getOrDefault(m , 0) + 1);
         }
         long res = 1 ; 
         for(int k : map.keySet()){
             int a = map.get(k);
             long t = 1 ;
             while(a-- > 0){//执行指数a次
                t = (k * t + 1) % N;//t乘底数
             }
             res = res * t % N ;
         }
         System.out.println(res);
    }
   
}

4、最大公约数

模板

//欧几里得算法,也可以叫做辗转相除法
/** | 这个符号表示整除

  • 基本性质: d|a -> d|b -> d|a+b -> d|ax+by
  • 核心原理:最大公约数 (a,b) = (b,a%b)
public static int gcd(int a,int b){
        return b != 0 ? gcd(b,a % b) : a;
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

依嘫_吃代码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值