系列文章目录
前言
背包问题的求最大价值对应着最短路径
而求具体方案对应着最短路的路径
一、01背包问题求具体方案
统一策略 且有字典序要求
正常来讲背包问题是先考虑第n个物品选还是不选
但是题目要求的是字典序 所以考虑倒序存入输出
然而这个v[i]和w[i]要先存入 要不边存入边遍历的话 只是下标有变化 并没有倒序存入输出
因为有倒序输出的所以这个题 不能用一维数组进行优化
import java.util.*;
public class Main{
static int N = 1010;
static int[][] f = new int[N][N];
static int[] v = new int[N];
static int[] w = new int[N];
public static void main(String[] args){
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
int V = scan.nextInt();
for(int i = 1 ; i <= n ; i++){
v[i] = scan.nextInt();
w[i] = scan.nextInt();
}
for(int i = n ; i >= 1 ;i-- ){
for(int j = 0 ; j <= V ; j ++){
f[i][j] = f[i+1][j];
if(j >= v[i] ) f[i][j] = Math.max(f[i][j],f[i+1][j-v[i]]+w[i]);
}
}
int j = V ;
//f[1][V] 是最大值
for(int i = 1 ; i <= n ; i++ ){
if(j >= v[i] && f[i][j] == f[i+1][j-v[i]]+w[i] ){
System.out.print(i + " ");
j -= v[i] ;
}
}
}
}
二、完全背包问题求具体方案
1449. 数位成本和为目标值的最大数字
原题链接
给你一个整数数组 cost 和一个整数 target 。请你返回满足如下规则可以得到的 最大 整数:
- 给当前结果添加一个数位(i + 1)的成本为 cost[i] (cost 数组下标从 0 开始)。
- 总成本必须恰好等于 target 。
- 添加的数位中没有数字 0 。
由于答案可能会很大,请你以字符串形式返回。
如果按照上述要求无法得到任何整数,请你返回 “0” 。
输入:cost = [4,3,2,5,6,7,2,5,5], target = 9
输出:“7772”
解释:添加数位 ‘7’ 的成本为 2 ,添加数位 ‘2’ 的成本为 3 。所以 “7772” 的代价为 2* 3+ 3*1 = 9 。 “977” 也是满足要求的数字,但 “7772” 是较大的数字。
数字 成本
1 -> 4
2 -> 3
3 -> 2
4 -> 5
5 -> 6
6 -> 7
7 -> 2
8 -> 5
9 -> 5
要求:
cost.length == 9
1 <= cost[i] <= 5000
1 <= target <= 5000
题解
关于背包问题的初始化总结 参考大佬的这篇
class Solution {
public String largestNumber(int[] cost, int target) {
int n = 9;
int[][] f = new int[10][5010];
int[] v = new int[10];
Arrays.fill(f[0],-0x3f3f3f3f);
for(int i = 1;i <= n;i ++) v[i] = cost[i - 1];
for(int i = 1;i <= n ;i ++)
{
for(int j = 1;j <= target;j ++)
{
f[i][j] = f[i - 1][j];
if(j >= v[i])
f[i][j] = Math.max(f[i][j], f[i][j - v[i]] + 1);
}
}
if(f[9][target] < 0) return "0";
String ans = "";
for(int i = 9,j = target;i >= 1;i --)
{
while(j >= v[i] && f[i][j] == f[i][j - v[i]] + 1)
{
ans += i;
j -= v[i];
}
}
return ans;
}
}
分组背包问题求方案数
1013.机器分配
import java.util.*;
public class Main{
static int N = 100;
static int[][] f = new int[N][N];
static int[][] w = new int[N][N];
static int [] s = new int[N];
public static void main(String[] args){
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
int m = scan.nextInt();//设备总数
for(int i = 1 ; i <= n ; i++){
for(int j = 1 ; j <= m ; j ++){
w[i][j] = scan.nextInt();
}
}
for(int i = 1 ; i <= n ; i++ ){//枚举物品
for(int j = 0 ; j <= m ; j++){//枚举体积
f[i][j] = f[i-1][j];
for(int k = 0 ; k <= j ; k ++){//枚举选择
f[i][j] = Math.max(f[i][j],f[i-1][j-k]+w[i][k]);
}
}
}
System.out.println(f[n][m]);
int j = m ;
for(int i = n ; i >= 1 ;i --){
for(int k = 0 ; k <= j ; k++){
if(f[i][j] == f[i-1][j-k]+w[i][k]){
s[i] = k ;
j -= k ;
break;
}
}
}
for(int i = 1 ; i <= n ; i++){
System.out.println(i + " " + s[i] );
}
}
}