Python
文章平均质量分 67
长吟永叹
这个作者很懒,什么都没留下…
展开
-
PyTorch实战代码
线性拟合import torchfrom torch.autograd import Variableimport torch.nn.functional as Fimport matplotlib.pyplot as pltx = torch.unsqueeze(torch.linspace(-1,1,100),dim=1)y=x.pow(2)+0.2*torch.rand(x.size())x,y=Variable(x),Variable(y)class Net(torch.nn.原创 2020-08-07 10:51:46 · 382 阅读 · 0 评论 -
PyTorch—学习笔记(附源码)
1.基础知识torch.Tensor(a,b) #分配了a*b矩阵,只分配空间,未初始化torch.rand(a,b) #使用[0,1]均匀分布随机初始化二维数组torch.Size() #查看其形状torch对象相加的三种写法y.add_(x) #这种加法会改变y的值 x+y #不会改变y的值result=torch.Tensor(a,b) #预先分配空间torch.add(x , y, out=result)#输入到resul原创 2020-07-16 18:20:17 · 4729 阅读 · 0 评论 -
Python-numpy库学习笔记
1.定义/创建array=np.array(list,dtype=np.int64) #将列表转换为数组,并定义格式,在这里定义成了int64位array.ndim #输出该数组的维度array.shape #输出该数组的形状(n*m)array.size #总共有多少个元素array.dtype #格式np.zeros((n,m)) #创建一个n行m列的0矩阵np.ones((n,m),dype=np.int64) #创建一个n行m列的1矩阵np.empty((n,m)) #创建一原创 2020-06-21 19:32:08 · 599 阅读 · 0 评论