题目描述
给定一个二叉树,判断它是否是高度平衡的二叉树。
本题中,一棵高度平衡二叉树定义为:
一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1。
示例 1:
给定二叉树 [3,9,20,null,null,15,7]
3
/ \
9 20
/ \
15 7
返回 true 。
示例 2:
给定二叉树 [1,2,2,3,3,null,null,4,4]
1
/ \
2 2
/ \
3 3
/ \
4 4
返回 false 。
解题思路
这题感觉和求二叉树高度的题很像。
有自顶向下和自底向上两种方式。
1 .自顶向下
1)先验证根节点是不是平衡二叉树,即需要计算出根节点的高度,而根节点的高度由取决于左右子树。
2)再验证左右子树是不是平衡二叉树,同1),显然出现了大量的重复计算,要计算好多好多好多次高度才行。
递归问题不要想细节,只需要想这个递归函数的功能,输入什么,返回什么。
class Solution {
public int help(TreeNode root){
if (root == null){
return 0;
}
int left = help(root.left);
int right = help(root.right);
return Math.max(left,right) + 1;
}
public boolean isBalanced(TreeNode root) {
if (root == null){
return true;
}
int leftHeight = help(root.left);
int rightHeight = help(root.right);
if (Math.abs(leftHeight - rightHeight) > 1){
return false;
}
return isBalanced(root.left) && isBalanced(root.right);
}
}
2 自底向上
直接转换成求树高的问题,再这个过程中,顺便看一下是不是平衡。
递归函数help功能就是求树高,所以两个小递归结束之后就得到了子树的树高(不要管一层一层是怎么做到的),然后作max+1就得到了根的树高。
class Solution {
public boolean isBalanced(TreeNode root) {
int res = help(root);
//System.out.println(res);
return res == -1 ? false : true;
}
//把问题转换成计算树高 在这个过程中顺便看一下是不是平衡
//之前都是设置一个flag作为全局变量 感觉那样子不好 所以这次相当于用-1代替false
public int help(TreeNode root){
if (root == null){
return 0;
}
int leftHeight = help(root.left);
int rightHeight = help(root.right);
if (leftHeight == -1 || rightHeight == -1){
return -1;
}
if (Math.abs(leftHeight - rightHeight) > 1){
return -1;
}
return Math.max(leftHeight,rightHeight) + 1;
}
}