题目描述
给定一个二叉树,判断其是否是一个有效的二叉搜索树。
假设一个二叉搜索树具有如下特征:
- 节点的左子树只包含小于当前节点的数。
- 节点的右子树只包含大于当前节点的数。
- 所有左子树和右子树自身必须也是二叉搜索树。
示例 1:
输入: 2 / \ 1 3 输出: true
示例 2:
输入: 5 / \ 1 4 / \ 3 6 输出: false 解释: 输入为: [5,1,4,null,null,3,6]。 根节点的值为 5 ,但是其右子节点值为 4 。
解题思路
一开始,就想着用递归,先判断当前节点是不是大于作小于右,然后再递归判断左右子节点。但其实这样做是不对的,因为每个节点的都有上界和下界。[10,5,15,null,null,6,20] 看这个用例就明白了。
所以改进就是要在递归中加进上下界。 (还没做待补充)
还有一种想法是用中序。
class Solution {
/*
利用二叉搜索树中序遍历的递增特性
*/
//int pre = Integer.MIN_VALUE;
long pre = Long.MIN_VALUE; //用例非要卡这样的边界值有啥用啊
boolean flag = true;
public boolean isValidBST(TreeNode root) {
inOrder(root);
return this.flag;
}
public void inOrder(TreeNode root){
if (root == null){
return;
}
inOrder(root.left);
if (root.val <= pre){
flag = false;
}
pre = root.val;
inOrder(root.right);
}
}