pytorch中ConvTranspose的参数设置

博客介绍了转置卷积(ConvTranspose)在深度学习中用于图像上采样的作用,强调了其神经元连接模式需与原始卷积一致。通过PyTorch的示例代码,展示了如何正确配置ConvTranspose以保持与原始卷积参数相同,从而得到正确的上采样结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ConvTranspose

ConvTranspose是standard convolution的转置。一般地,它被用来对图像进行上采样。上采样的过程中,ConvTranspose中神经元的连接模式要和原始的convolution保持一致。一个标准卷积所对应的转置卷积如 A guide to convolution arithmetic for deep learning 所示。为了使用图像的上采样,转置卷积都会对图像增加0填充,之后再对其进行卷积。

在pytorch的官方文档中,它并没有明确指出ConvTranpose中的卷积核大小,步长以及填充,特别是步长,是否和原始卷积保持一致即可。不同的配置可以会出现相同的结果,但是其可能破坏了原始的连接模式。经过实验表明,在pytorch中,一个转置卷积的参数设置只需保持和其原始标准卷积的相同配置即可。如下代码所示:

import torch
from torch import nn
input = torch.rand((1, 1, 103, 5, 5))
conv = nn.Conv3d(1, 1, 3, (3, 1, 1), (1, 0, 0))
intermediate = conv(input)
intermediate.shape
tconv = nn.ConvTranpose3d(1, 1, 3, (3, 1, 1), (1, 0, 0))
out = tconv(intermediate)
out.shape
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值