同余

本文深入探讨了同余关系的性质,包括整除性、传递性、基本运算保持性,以及如何通过放大缩小底数和模数来解决同余方程。详细解析了威尔逊定理、费马小定理及其逆元、欧拉函数和卢卡斯定理等关键定理,同时介绍了线性同余方程、线性同余方程组、二次剩余和高次剩余的解法。
摘要由CSDN通过智能技术生成

即 a \equiv b(mod\, \,m)

性质:

  • 整除性 

       a \equiv b(mod \,\,m) \Rightarrow c*m=a-b \Leftrightarrow a\equiv b (mod\,\,m) \Rightarrow m|(a - b)  

  • 传递性

      \begin{matrix} a \equiv b(mod\,\, m) \\ b \equiv c(mod\,\, m) \end{Bmatrix} \Rightarrow a \equiv c(mod\,\, m)

  • 保持基本运算

      \begin{matrix} a \equiv b(mod\,\, m) \\ c \equiv d(mod\,\, m) \end{Bmatrix} \Rightarrow \begin{Bmatrix} a \pm c \equiv b \pm d (mod\,\, m) \\ ac \equiv bd(mod\,\, m) \end{matrix}

      a \equiv b (mod\,\, m) \Rightarrow \begin{Bmatrix} an \equiv bn (mod\,\, m), \forall n \in \mathbb{Z} \\ a^n \equiv b^n (mod m), \forall n \in \mathbb{N^{0}} \end{matrix}

  • 放大缩小底数

      k为正整数,n为正整数,(km \pm a)^n \equiv (\pm a)^n \: (mod\; m)

  • 放大缩小模数

      k为正整数,a \equiv b (mod\,\, m) \Leftrightarrow ka \equiv kb (mod\,\, km)

同余关系式:

  1. 威尔逊定理
  2. 费马小定理及其逆元
  3. 欧拉函数及其扩展欧拉函数
  4. 卢卡斯定理

同余方程:

  1. 线性同余方程
  2. 线性同余方程组
  3. 二次剩余
  4. 高次剩余
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值