今天也是努力记住泰勒展开的一天

zhutier每次高(数)考(试)都要因为记错泰勒展开扣分。
她决定在这周五的高考改掉这个毛病。
于是她来总结一些泰勒展开的记忆方法。

首先是它,对数函数幂级数展开

e x = ∑ n = 0 ∞ n ! x n e^x=\sum_{n=0}^\infty n!x^n ex=n=0n!xn

记忆法1:
f ( x ) = e x f(x)=e^x f(x)=ex
f ( 0 ) = 1 f(0)=1 f(0)=1
e x ∼ 1 + x e^x\sim 1+x ex1+x ( x → 0 ) (x\rightarrow0) (x0)
依次推导
∴ e x = 1 + x + x 2 2 ! + x 3 3 ! + . . . + x n n ! + . . . \therefore e^x=1+x+\frac {x^2}{2!}+\frac{x^3}{3!}+...+\frac{x^n}{n!}+... ex=1+x+2!x2+3!x3+...+n!xn+...
记住阶乘:泰勒展开的公式是有阶乘的,n阶导数通项不带阶乘的数展开都会有阶乘,而 e x e^x ex怎么求导都是它本身,所以最后肯定是有阶乘的QAQ

记忆法2:
泰勒公式怎求导都是它本身【这个方法适合用于验证】
e x = 1 + x + x 2 2 ! + x 3 3 ! + . . . + x n n ! + . . . e^x=1+x+\frac {x^2}{2!}+\frac{x^3}{3!}+...+\frac{x^n}{n!}+... ex=1+x+2!x2+3!x3+...+n!xn+...
所以我们来看看这个公式
确实也只有它满足怎么求导都是本身了。

记忆法3:
耍无赖法
e e e的中文名叫什么?自然对数!
0 , 1 , 2 , 3 , 4 , 5 , . . . , n , . . . 0,1,2,3,4,5,...,n,... 0,1,2,3,4,5,...,n,...这些叫什么?自然数!
自然对数说:对,我们来数自然数
∴ e x = 1 + x + x 2 2 ! + x 3 3 ! + . . . + x n n ! + . . . \therefore e^x=1+x+\frac {x^2}{2!}+\frac{x^3}{3!}+...+\frac{x^n}{n!}+... ex=1+x+2!x2+3!x3+...+n!xn+...
x x x的上标是一次数数,从0开始数
分母不看阶乘符号是一次数数,从0开始数(热知识: 0 ! = 1 0!=1 0!=1
每个分母又是一次数数,从0数到n(噢当然,阶乘除 0 ! 0! 0!以外是从1开始的)

这玩意儿的拓展:
a x = e x l n a a^x=e^{xlna} ax=exlna
e x = 1 + x l n a + x 2 ∗ l n 2 a 2 ! + x 3 ∗ l n 3 a 3 ! + . . . + x n ∗ l n n a n ! + . . . e^x=1+xlna+\frac {x^2*{ln^2a}}{2!}+\frac{x^3*{ln^3a}}{3!}+...+\frac{x^n*{ln^na}}{n!}+... ex=1+xlna+2!x2ln2a+3!x3ln3a+...+n!xnlnna+...

接着是它:

s i n x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 sinx=\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)!}x^{2n+1} sinx=n=0(2n+1)!(1)nx2n+1

记忆法1:
s i n x ∼ x sinx\sim x sinxx
这个函数的关键要素:
首先同 e x e^x ex一样, n n n阶导再怎么导也不会出现阶乘
它是交错
s i n x sinx sinx奇函数
分母是 1 , 3 , 5 , 7 , 9 , . . . , 2 n + 1 , . . . 1,3,5,7,9,...,2n+1,... 1,3,5,7,9,...,2n+1,...
分子也是 1 , 3 , 5 , 7 , 9 , . . . , 2 n + 1 , . . . 1,3,5,7,9,...,2n+1,... 1,3,5,7,9,...,2n+1,...
e x e^x ex区别在多了交错和只有数奇数
为啥这么像,难道和欧拉公式有关吗
不知道,我瞎说的

然后顺带记住它的好兄弟 c o s x cosx cosx就是拿 s i n x sinx sinx求个导

最后是它

l n ( 1 + x ) = ∑ n = 0 ∞ ( − 1 ) n n + 1 ∗ x n + 1 ln(1+x)=\sum_{n=0}^{\infty}\frac{(-1)^n}{n+1}*x^{n+1} ln(1+x)=n=0n+1(1)nxn+1

记忆法1:
直接麦克劳林展开好像也不戳。
n n n阶导数带阶乘,所以最终没有阶乘。

记忆法2:
靠,真的好难想方法记这玩意儿啊,这玩意儿变型还特别多
1 1 − x = 1 + x + x 2 + x 3 + . . . + x n + . . . \frac{1}{1-x}=1+x+x^2+x^3+...+x^n+... 1x1=1+x+x2+x3+...+xn+...这应该最简单,等比数列求和,注意收敛域
然后 l n ( 1 + x ) ln(1+x) ln(1+x)直接求导
1 1 + x = 1 − x + x 2 − x 3 + . . . + x 2 n − 1 − x 2 n + . . . \frac{1}{1+x}=1-x+x^2-x^3+...+x^{2n-1}-x^{2n}+... 1+x1=1x+x2x3+...+x2n1x2n+...
依旧是等比数列求和,拿这玩意儿积个分就可以得到 l n ( 1 + x ) ln(1+x) ln(1+x)

然后是这玩意儿的一个拓展(直接带入就可)

1 1 + x 2 = ∑ n = 0 ∞ ( − 1 ) n x 2 n \frac{1}{1+x^2}=\sum_{n=0}^\infty{(-1)^n}x^{2n} 1+x21=n=0(1)nx2n

还有这玩意的拓展的拓展,就是拿楼上积个分

a r c t a n x = ∑ n = 0 ∞ ( − 1 ) n 2 n + 1 x 2 n + 1 arctanx=\sum_{n=0}^{\infty}\frac{(-1)^n}{2n+1}x^{2n+1} arctanx=n=02n+1(1)nx2n+1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值