zhutier每次高(数)考(试)都要因为记错泰勒展开扣分。
她决定在这周五的高考改掉这个毛病。
于是她来总结一些泰勒展开的记忆方法。
首先是它,对数函数幂级数展开
e x = ∑ n = 0 ∞ n ! x n e^x=\sum_{n=0}^\infty n!x^n ex=∑n=0∞n!xn
记忆法1:
f
(
x
)
=
e
x
f(x)=e^x
f(x)=ex
f
(
0
)
=
1
f(0)=1
f(0)=1
e
x
∼
1
+
x
e^x\sim 1+x
ex∼1+x
(
x
→
0
)
(x\rightarrow0)
(x→0)
依次推导
∴
e
x
=
1
+
x
+
x
2
2
!
+
x
3
3
!
+
.
.
.
+
x
n
n
!
+
.
.
.
\therefore e^x=1+x+\frac {x^2}{2!}+\frac{x^3}{3!}+...+\frac{x^n}{n!}+...
∴ex=1+x+2!x2+3!x3+...+n!xn+...
记住阶乘:泰勒展开的公式是有阶乘的,n阶导数通项不带阶乘的数展开都会有阶乘,而
e
x
e^x
ex怎么求导都是它本身,所以最后肯定是有阶乘的QAQ
记忆法2:
泰勒公式怎求导都是它本身【这个方法适合用于验证】
e
x
=
1
+
x
+
x
2
2
!
+
x
3
3
!
+
.
.
.
+
x
n
n
!
+
.
.
.
e^x=1+x+\frac {x^2}{2!}+\frac{x^3}{3!}+...+\frac{x^n}{n!}+...
ex=1+x+2!x2+3!x3+...+n!xn+...
所以我们来看看这个公式
确实也只有它满足怎么求导都是本身了。
记忆法3:
耍无赖法
e
e
e的中文名叫什么?自然对数!
0
,
1
,
2
,
3
,
4
,
5
,
.
.
.
,
n
,
.
.
.
0,1,2,3,4,5,...,n,...
0,1,2,3,4,5,...,n,...这些叫什么?自然数!
自然对数说:对,我们来数自然数
∴
e
x
=
1
+
x
+
x
2
2
!
+
x
3
3
!
+
.
.
.
+
x
n
n
!
+
.
.
.
\therefore e^x=1+x+\frac {x^2}{2!}+\frac{x^3}{3!}+...+\frac{x^n}{n!}+...
∴ex=1+x+2!x2+3!x3+...+n!xn+...
x
x
x的上标是一次数数,从0开始数
分母不看阶乘符号是一次数数,从0开始数(热知识:
0
!
=
1
0!=1
0!=1)
每个分母又是一次数数,从0数到n(噢当然,阶乘除
0
!
0!
0!以外是从1开始的)
这玩意儿的拓展:
a
x
=
e
x
l
n
a
a^x=e^{xlna}
ax=exlna
e
x
=
1
+
x
l
n
a
+
x
2
∗
l
n
2
a
2
!
+
x
3
∗
l
n
3
a
3
!
+
.
.
.
+
x
n
∗
l
n
n
a
n
!
+
.
.
.
e^x=1+xlna+\frac {x^2*{ln^2a}}{2!}+\frac{x^3*{ln^3a}}{3!}+...+\frac{x^n*{ln^na}}{n!}+...
ex=1+xlna+2!x2∗ln2a+3!x3∗ln3a+...+n!xn∗lnna+...
接着是它:
s i n x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 sinx=\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)!}x^{2n+1} sinx=∑n=0∞(2n+1)!(−1)nx2n+1
记忆法1:
s
i
n
x
∼
x
sinx\sim x
sinx∼x
这个函数的关键要素:
首先同
e
x
e^x
ex一样,
n
n
n阶导再怎么导也不会出现阶乘
它是交错的
s
i
n
x
sinx
sinx是奇函数
分母是
1
,
3
,
5
,
7
,
9
,
.
.
.
,
2
n
+
1
,
.
.
.
1,3,5,7,9,...,2n+1,...
1,3,5,7,9,...,2n+1,...
分子也是
1
,
3
,
5
,
7
,
9
,
.
.
.
,
2
n
+
1
,
.
.
.
1,3,5,7,9,...,2n+1,...
1,3,5,7,9,...,2n+1,...
和
e
x
e^x
ex区别在多了交错和只有数奇数
为啥这么像,难道和欧拉公式有关吗
不知道,我瞎说的
然后顺带记住它的好兄弟
c
o
s
x
cosx
cosx就是拿
s
i
n
x
sinx
sinx求个导
最后是它
l n ( 1 + x ) = ∑ n = 0 ∞ ( − 1 ) n n + 1 ∗ x n + 1 ln(1+x)=\sum_{n=0}^{\infty}\frac{(-1)^n}{n+1}*x^{n+1} ln(1+x)=∑n=0∞n+1(−1)n∗xn+1
记忆法1:
直接麦克劳林展开好像也不戳。
n
n
n阶导数带阶乘,所以最终没有阶乘。
记忆法2:
靠,真的好难想方法记这玩意儿啊,这玩意儿变型还特别多
1
1
−
x
=
1
+
x
+
x
2
+
x
3
+
.
.
.
+
x
n
+
.
.
.
\frac{1}{1-x}=1+x+x^2+x^3+...+x^n+...
1−x1=1+x+x2+x3+...+xn+...这应该最简单,等比数列求和,注意收敛域
然后
l
n
(
1
+
x
)
ln(1+x)
ln(1+x)直接求导
1
1
+
x
=
1
−
x
+
x
2
−
x
3
+
.
.
.
+
x
2
n
−
1
−
x
2
n
+
.
.
.
\frac{1}{1+x}=1-x+x^2-x^3+...+x^{2n-1}-x^{2n}+...
1+x1=1−x+x2−x3+...+x2n−1−x2n+...
依旧是等比数列求和,拿这玩意儿积个分就可以得到
l
n
(
1
+
x
)
ln(1+x)
ln(1+x)
然后是这玩意儿的一个拓展(直接带入就可)
1 1 + x 2 = ∑ n = 0 ∞ ( − 1 ) n x 2 n \frac{1}{1+x^2}=\sum_{n=0}^\infty{(-1)^n}x^{2n} 1+x21=∑n=0∞(−1)nx2n
还有这玩意的拓展的拓展,就是拿楼上积个分
a r c t a n x = ∑ n = 0 ∞ ( − 1 ) n 2 n + 1 x 2 n + 1 arctanx=\sum_{n=0}^{\infty}\frac{(-1)^n}{2n+1}x^{2n+1} arctanx=∑n=0∞2n+1(−1)nx2n+1