目录
R/python/jupter
jupter notebook
包
mpl_finance
数据清洗与特征选择
OpenCV图像处理
时间序列分析
疫情模拟
机器学习与深度学习
机器学习模型
股价预测
方法:自回归
loss
SGD
线性回归(模型是什么样?损失函数是什么?)、逻辑回归
高斯分布,最大似然估计MIE,最小二乘法
逻辑回归和softmax和神经网络中的全连接层
houseing.data
500多个不同房屋的信息
m=506,n=13,Xmn Ym1
(xi,yi)
输入xi,输出yi,
xi---->yi得到一个模型。
yi=Model(xi,Θ)
参数记为Θ,里面含有多个参数,Θ是个向量,x,y是已知,
Θ是未知向量,VGGNet :138M 参数, 线性回归:14个
yi_predice与yi之间误差总和(平方和)是最小的。(yi_predice(Θ)-yi)(2)
CROSS Entropy:交叉熵
SSE
MSE:均方误差,
loss=模型误差和/个数m,loss只与Θ有关,称为损失函数。
Θ初始化:随机/先验
我们不知道函数是什么?对损失函数求偏导。∂loss/∂θ,沿着负梯度做下降?Θ
技术点
梯度下降算法
最大似然估计
线性回归
模型是什么?
一元,二元,
损失函数是什么
误差有正有负
去猜服从什么分布!
高斯是不直观,欧拉是直观,自己去确定的。
(假设)误差是独立同分布的,服从均值为0,方差为σ²的高斯分布、
P(y1,y2,y3…ym)是似然概率。
L(Θ)最大似然函数。
图上的x,y是训练样本
使用梯度下降算法不能保证是最优的。
防止过拟合
y值可以通过X的值求出来。
可以求得Θ是9行一列的,就是从(a0…a8)