机器学习模型(线性回归、逻辑回归、决策树和随机森林、SVM&向量机)

本文详细介绍了机器学习中的几种基本模型,包括线性回归、逻辑回归、决策树和随机森林。讨论了线性回归的模型和损失函数,以及防止过拟合的方法,如正则化。还提到了逻辑回归的推导和应用。在决策树和随机森林部分,讲解了信息熵和香农信息熵的概念。此外,文章也涉及支持向量机和聚类等主题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


R/python/jupter
jupter notebook

mpl_finance

数据清洗与特征选择
OpenCV图像处理
时间序列分析
疫情模拟
机器学习与深度学习

机器学习模型

股价预测

方法:自回归

loss

SGD

线性回归(模型是什么样?损失函数是什么?)、逻辑回归

高斯分布,最大似然估计MIE,最小二乘法
逻辑回归和softmax和神经网络中的全连接层

houseing.data

500多个不同房屋的信息
m=506,n=13,Xmn Ym1
(xi,yi)
输入xi,输出yi,
xi---->yi得到一个模型。
yi=Model(xi,Θ)
参数记为Θ,里面含有多个参数,Θ是个向量,x,y是已知,
Θ是未知向量,VGGNet :138M 参数, 线性回归:14个
yi_predice与yi之间误差总和(平方和)是最小的。(yi_predice(Θ)-yi)(2)
CROSS Entropy:交叉熵
SSE
MSE:均方误差,
loss=模型误差和/个数m,loss只与Θ有关,称为损失函数。
Θ初始化:随机/先验
我们不知道函数是什么?对损失函数求偏导。∂loss/∂θ,沿着负梯度做下降?Θ

在这里插入图片描述

技术点
梯度下降算法
最大似然估计

线性回归

模型是什么?
一元,二元,
在这里插入图片描述

损失函数是什么

在这里插入图片描述

误差有正有负

去猜服从什么分布!

高斯是不直观,欧拉是直观,自己去确定的。
假设)误差是独立同分布的,服从均值为0,方差为σ²的高斯分布、
P(y1,y2,y3…ym)是似然概率。
L(Θ)最大似然函数。
在这里插入图片描述
图上的x,y是训练样本
使用梯度下降算法不能保证是最优的。

防止过拟合

在这里插入图片描述
y值可以通过X的值求出来。
可以求得Θ是9行一列的,就是从(a0…a8)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nefelibat

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值