HDU-1232.畅通工程
Problem Description
某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最少还需要建设的道路数目。
Sample Input
4 2
1 3
4 3
3 3
1 2
1 3
2 3
5 2
1 2
3 5
999 0
0
Sample Output
1
0
2
998
并查集
并查集基本题型,完全可以按照并查集模版求解。
把互相连通的城市,合并到一个城市上,即找到他们的一个中心城市,比如1和2相连,2和3相连,那么可以定1为3个城市的中心城市。
最后找出中心城市的个数,减一就是需要建设的道路数目。
因为一个城区只有一个中心城市,有多少个中心城市,就有多少个城区,所以只需让中心城市之间相连就行。
#include <cstdio>
#include <vector>
#include <iostream>
#include <cstring>
using namespace std;
vector<int> p(1000,0);
int m,n,x,y; //m个城市,n条路线,x与y之间有连接
int findroot(int x) // 路径压缩
{
if(x == p[x]) return x;
return p[x] = findroot(p[x]);
}
void merig(int x,int y) //合并
{
int a = findroot(x);
int b = findroot(y);
if(a == b) return;
p[b] = a;
}
void init()
{
for(int i=1;i<=m;i++)
p[i] = i;
}
int main()
{
while(cin>>m>>n&&n)
{
init(); //初始化
for(int i = 0;i<n;i++)
{
cin>>x>>y;
merig(x,y);
}
int ans = 0;
for(int i=1;i<=m;i++)
{
if(i == p[i])
ans++;
}
cout<<ans-1<<endl;
}
return 0;
}