1499 : 国际象棋
Description
国际象棋棋盘由黑白相间的格子组成,要把k个相同的棋子摆放在黑色区域内,摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列。
求对于给定的棋盘,摆放k个棋子的所有可行的摆放方案数。
Input
输入含有多组测试数据。 每组数据的第一行是两个正整数,n k,用一个空格隔开:n表示将在一个n*n的矩阵内描述棋盘,k表示摆放棋子的数目。( 1 ≤ k ≤ n ≤ 8 )
随后的n行描述了棋盘的形状:每行有n个字符,其中 “#” 表示黑色区域(可以摆放棋子), “.” 表示白色区域(不可以摆放棋子)。(数据保证不出现多余的空白行或者空白列)。
当n k 为-1 -1时表示输入结束。
对于样例1:棋盘[0,0][1,1]两个位置都可以摆放棋子,要把1个棋子摆放在这两个位置,共2种方案。
对于样例2:棋盘[0,3][1,2][2,1][3,0]四个位置都可以摆放棋子,要把4个棋子摆放在这四个位置,共1种方案
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1
Sample Output
2
1
dis 回溯
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<unordered_set>
#include<set>
#include<unordered_map>
#include<vector>
#include<algorithm>
#include<set>
#include<queue>
#include<cmath>
using namespace std;
int n,k;
char mp[10][10];
int book[10];//表示第i行的第book[i]列
int ans;
void Backtrack(int x,int t) //x行,t个棋子
{
if(x>n) return;
if(t==k)
{
ans++;
return;
}
for(int i=x;i<n;i++) //第i行从x开始
{
for(int j=0;j<n;j++) //第j列
{
if(mp[i][j]=='#'&&book[j]==0)
{
book[j]=1; //第i列被放置棋子,标记
Backtrack(i+1,t+1); //搜索下一行,棋子数加1
book[j]=0; //复原
}
}
//Backtrack(x+1,t);
}
}
int main()
{
while(scanf("%d%d",&n,&k)==2&&n!=-1&&k!=-1)
{
for(int i=0;i<n;i++)
{
scanf("%s",mp[i]);
}
ans = 0;
memset(book,0,sizeof(book));
//for(int i=0;i<n;i++)
Backtrack(0,0); //表示从第i行开始放置棋子
printf("%d\n",ans);
}
return 0;
}
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<unordered_set>
#include<set>
#include<unordered_map>
#include<vector>
#include<algorithm>
#include<set>
#include<queue>
#include<cmath>
using namespace std;
int n,k;
char mp[10][10];
int book[10];//表示第i行的第book[i]列
int ans;
void Backtrack(int x,int t) //x行,t个棋子
{
if(x>n) return;
if(t==k)
{
ans++;
return;
}
for(int i=0;i<n;i++)
{
if(mp[x][i]=='#'&&book[i]==0)
{
book[i]=1;
Backtrack(x+1,t+1);
book[i]=0;
}
}
Backtrack(x+1,t);
}
int main()
{
while(scanf("%d%d",&n,&k)==2&&n!=-1&&k!=-1)
{
for(int i=0;i<n;i++)
{
scanf("%s",mp[i]);
}
ans = 0;
memset(book,0,sizeof(book));
//for(int i=0;i<n;i++)
Backtrack(0,0); //表示从第i行开始放置棋子
printf("%d\n",ans);
}
return 0;
}