Educational Codeforces Round 11 C. Hard Process(前缀和+二分)

题目链接:https://codeforc.es/contest/660/problem/C

题意:给你一个长度为n的01字符串,你可以最多把k个0改成1,问最长的连续为1的子串的长度。

题解:n和k的范围都是3e5,时间限制为1s,所以我们考虑nlogn的复杂度,或者更低的复杂度。

前缀和加二分。

对每一个i二分查找最远的满足条件的j,使得[i,j]之间用光k,[i,j]之间全部为1,

同时用mxlen记录区间长度,用L,R记录最大[i,j]的边界。

简单附代码:

#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#define Pair pair<int,int>
#define int long long
#define fir first
#define sec second
namespace fastIO{
  #define BUF_SIZE 100000
  #define OUT_SIZE 100000
  //fread->read
  bool IOerror=0;
//inline char nc(){char ch=getchar();if(ch==-1)IOerror=1;return ch;}
  inline char nc(){
    static char buf[BUF_SIZE],*p1=buf+BUF_SIZE,*pend=buf+BUF_SIZE;
      if(p1==pend){
        p1=buf;pend=buf+fread(buf,1,BUF_SIZE,stdin);
        if(pend==p1){IOerror=1;return -1;}
      }
      return *p1++;
  }
  inline bool blank(char ch){return ch==' '||ch=='\n'||ch=='\r'||ch=='\t';}
  template<class T> inline bool read(T &x){
    bool sign=0;char ch=nc();x=0;
    for(;blank(ch);ch=nc());
    if(IOerror)return false;
    if(ch=='-')sign=1,ch=nc();
    for(;ch>='0'&&ch<='9';ch=nc())x=x*10+ch-'0';
    if(sign)x=-x;
    return true;
  }
  inline bool read(double &x){
    bool sign=0;char ch=nc();x=0;
    for(;blank(ch);ch=nc());
    if(IOerror)return false;
    if(ch=='-')sign=1,ch=nc();
    for(;ch>='0'&&ch<='9';ch=nc())x=x*10+ch-'0';
    if(ch=='.'){double tmp=1; ch=nc();for(;ch>='0'&&ch<='9';ch=nc())tmp/=10.0,x+=tmp*(ch-'0');}
      if(sign)x=-x;return true;
  }
  inline bool read(char *s){
    char ch=nc();
    for(;blank(ch);ch=nc());
    if(IOerror)return false;
    for(;!blank(ch)&&!IOerror;ch=nc())*s++=ch;
    *s=0;
    return true;
  }
  inline bool read(char &c){
    for(c=nc();blank(c);c=nc());
    if(IOerror){c=-1;return false;}
    return true;
  }
  template<class T,class... U>bool read(T& h,U&... t){return read(h)&&read(t...);}
  #undef OUT_SIZE
  #undef BUF_SIZE
};using namespace fastIO;using namespace std;
 
const int N=3e5+5;
const double eps=1e-7;
const double pi=acos(-1.0);
const int mod=998244353;

int C[N],sum[N],P[N];

signed main(){
  int n,k;read(n,k);
  for(int i=1;i<=n;i++){
    read(C[i]);
    sum[i]=sum[i-1];
    if(C[i]==0)sum[i]++;
  }
  
  int L=0,R=0,mxlen=0;
  for(int i=1;i<=n;i++){
    int l=i,r=n;
    while(l<=r){
      int mid=(l+r)/2;
      if(sum[mid]-sum[i-1]<=k){
        l=mid+1;
        if(mid-i+1>mxlen){
          mxlen=mid-i+1;
          L=i;R=mid;
        }
      }
      else r=mid-1;
    }
  }
  printf("%lld\n",mxlen);
  for(int i=1;i<=n;i++){
    if(i<=R && i>=L)printf("1 ");
    else printf("%lld ",C[i]);
  }
  
  return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值