题目链接:https://codeforc.es/contest/835/problem/C
题意:有N个星星,每个星星有个坐标和一个初始亮度,星星的亮度随时间的增加而增加,但是所有的星星有一个最大亮度,超过这个最大亮度后,亮度变为,如此循环,有次询问,每次询问时间时,给出的矩形内的星星总亮度为多少。
题解:f[x][y][c]表示和组成的矩形内亮度为c的星星的数量,可以预处理出每个矩形内的初始不同亮度的星星的个数(举矩形的左下角都是)。
然后通过容斥原理,可以求出任意两个坐标组成的矩形内的不同亮度的星星的个数。
对每个时间枚举亮度即可,
代码:
#pragma GCC optimize(2)
#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#define Pair pair<int,int>
#define int long long
#define fir first
#define sec second
namespace fastIO {
#define BUF_SIZE 100000
#define OUT_SIZE 100000
//fread->read
bool IOerror = 0;
//inline char nc(){char ch=getchar();if(ch==-1)IOerror=1;return ch;}
inline char nc() {
static char buf[BUF_SIZE], * p1 = buf + BUF_SIZE, * pend = buf + BUF_SIZE;
if (p1 == pend) {
p1 = buf; pend = buf + fread(buf, 1, BUF_SIZE, stdin);
if (pend == p1) { IOerror = 1; return -1; }
}
return *p1++;
}
inline bool blank(char ch) { return ch == ' ' || ch == '\n' || ch == '\r' || ch == '\t'; }
template<class T> inline bool read(T& x) {
bool sign = 0; char ch = nc(); x = 0;
for (; blank(ch); ch = nc());
if (IOerror)return false;
if (ch == '-')sign = 1, ch = nc();
for (; ch >= '0' && ch <= '9'; ch = nc())x = x * 10 + ch - '0';
if (sign)x = -x;
return true;
}
inline bool read(double& x) {
bool sign = 0; char ch = nc(); x = 0;
for (; blank(ch); ch = nc());
if (IOerror)return false;
if (ch == '-')sign = 1, ch = nc();
for (; ch >= '0' && ch <= '9'; ch = nc())x = x * 10 + ch - '0';
if (ch == '.') { double tmp = 1; ch = nc(); for (; ch >= '0' && ch <= '9'; ch = nc())tmp /= 10.0, x += tmp * (ch - '0'); }
if (sign)x = -x; return true;
}
inline bool read(char* s) {
char ch = nc();
for (; blank(ch); ch = nc());
if (IOerror)return false;
for (; !blank(ch) && !IOerror; ch = nc())* s++ = ch;
*s = 0;
return true;
}
inline bool read(char& c) {
for (c = nc(); blank(c); c = nc());
if (IOerror) { c = -1; return false; }
return true;
}
template<class T, class... U>bool read(T& h, U& ... t) { return read(h) && read(t...); }
#undef OUT_SIZE
#undef BUF_SIZE
}; using namespace fastIO; using namespace std;
const int N = 1e2 + 5;
const double eps = 1e-7;
const double pi = acos(-1.0);
const int mod = 998244353;
int sum[N][N][15];
int n,q,c;
void f(){
for(int x=1;x<=100;x++)
for(int y=1;y<=100;y++)
for(int c=0;c<=10;c++)
sum[x][y][c]+=sum[x-1][y][c]+sum[x][y-1][c]-sum[x-1][y-1][c];
}
signed main() {
read(n,q,c);
for(int i=1;i<=n;i++){
int ini,x,y;
read(x,y,ini);
sum[x][y][ini]++;
}
f();
while(q--){
int t,x1,y1,x2,y2,res=0;
read(t,x1,y1,x2,y2);
for(int tc=0;tc<=c;tc++){
int nc=(tc+t)%(c+1);
res+=nc*(sum[x2][y2][tc]-sum[x2][y1-1][tc]-sum[x1-1][y2][tc]+sum[x1-1][y1-1][tc]);
}
printf("%lld\n",res);
}
return 0;
}