SPFA 邻接表讲解

以 hdu2544 题为例

hdu2544

普通的存图方法

const int maxn=10005;
int head[maxn];   //head[u]表示以head为出发点的邻接表表头在数组Node中的位置,开始时所有元素初始化为-1
int d[maxn];      //记录起点到个点的最短距离
bool vis[maxn];   //标记数组是否进入队列
int n,m,cnt;
struct node
{
    int u;    //所存路径的起点
    int v;    //所存路径的终点
    int w;    //权值
    int next;     //(重点)与当前所存路径同起点的上一条路径
}Node[maxn];
void add(int u,int v,int w)
{
    Node[cnt].u=u;
    Node[cnt].v=v;
    Node[cnt].w=w;
    Node[cnt].next=head[u];
    head[u]=cnt++;
}

链式前向星

const int maxn=10005;
int head[maxn];   //head[u]表示以head为出发点的邻接表表头在数组Node中的位置,开始时所有元素初始化为-1
int d[maxn];      //记录起点到个点的最短距离
bool vis[maxn];   //标记数组是否进入队列
int n,m,cnt;
struct node
{
    int v;    //所存路径的终点
    int w;    //权值
    int next;     //(重点)与当前所存路径同起点的上一条路径
}Node[maxn];
void add(int u,int v,int w)  //链式前向星存图
{
    Node[cnt].v=v;
    Node[cnt].w=w;
    Node[cnt].next=head[u];
    head[u]=cnt++;
}

spfa主体

void spfa(int x)
{
    memset(vis,0,sizeof(vis));
    memset(d,inf,sizeof(d));
    queue<int>q;
    vis[x]=1;
    d[x]=0;    //x为原点
    q.push(x);
    while(!q.empty())
    {
        int t=q.front();
        q.pop();
        vis[t]=0;            //记得取消标记  与BFS不同
        for(int i=head[t];i!=-1;i=Node[i].next)   //直到以t为起点的路径全部加入队列才结束这一次的 for 循环(也就是直到找到第一个被输入的项,其next值为-1)
        {
            node e=Node[i];
            if(d[e.v]>d[e.u]+e.w)      //松弛操作
            {
                d[e.v]=d[e.u]+e.w;
                if(!vis[e.v])        //若被搜索到的节点不在队列q中,则把 e.v 加入到队列中去

                {
                    q.push(e.v);
                    vis[e.v]=1;
                }
            }
        }
    }
}
//如果用链式前向星存图只需将 e.u 改为 t

例题答案

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define inf 0x3f3f3f3f
using namespace std;
const int maxn=10005;
int head[maxn];   //head[u]表示以head为出发点的邻接表表头在数组Node中的位置,开始时所有元素初始化为-1
int d[maxn];      //记录起点到个点的最短距离
bool vis[maxn];   //标记数组是否进入队列
int n,m,cnt;
struct node
{
    int u;    //所存路径的起点
    int v;    //所存路径的终点
    int w;    //权值
    int next;     //(重点)与当前所存路径同起点的上一条路径
}Node[maxn];
void add(int u,int v,int w)
{
    Node[cnt].u=u;
    Node[cnt].v=v;
    Node[cnt].w=w;
    Node[cnt].next=head[u];
    head[u]=cnt++;
}
void spfa(int x)
{
    memset(vis,0,sizeof(vis));
    memset(d,inf,sizeof(d));
    queue<int>q;
    vis[x]=1;
    d[x]=0;
    q.push(x);
    while(!q.empty())
    {
        int t=q.front();
        q.pop();
        vis[t]=0;            //记得取消标记  与BFS不同
        for(int i=head[t];i!=-1;i=Node[i].next)   //直到以t为起点的路径全部加入队列才结束这一次的 for 循环(也就是直到找到第一个被输入的项,其next值为-1)
        {
            node e=Node[i];
            if(d[e.v]>d[e.u]+e.w)
            {
                d[e.v]=d[e.u]+e.w;
                if(!vis[e.v])
                {
                    q.push(e.v);
                    vis[e.v]=1;
                }
            }
        }
    }
}
int main()
{
    while(~scanf("%d%d",&n,&m) && (n!=0 || m!=0))
    {
        cnt=0;
        memset(head,-1,sizeof(head));
        for(int i=0;i<m;i++)
        {
            int u,v,w;
            cin>>u>>v>>w;
            add(u,v,w);   //因为是双向路所以添加两次
            add(v,u,w);   //注意与上一个 add 的不同
        }
        spfa(1);    //
        printf("%d\n",d[n]);
    }
    return 0;
}

第一次学 spfa 的邻接表,这是我的一点见解,有什么不足之处请多多指教

SPFA算法优化—SLF和LLL优化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值