CodeForces - 617E(Div 2) XOR and Favorite Number
题意:
给定n个数,m个区间和k,求每一个区间内有多少个 子区间的所有数的异或值为k
思路:
将每一个数的前缀异或和存储下来,如果区间 [ l , r ]的异或值为k,则 sum[l-1]^sum[r]=k,sum[r]^k=sum[l-1]。在存储区间时提前将左边界处理好。cnt存储出现次数。
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<bitset>
#include<cstdio>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
typedef long long ll;
const int maxn = 2e6+10;
struct node
{
int l,r,id;
}t[maxn];
int n,m,k,block;
ll ans,a[maxn],temp[maxn],cnt[maxn];
bool cmp(node a,node b){//按照奇偶性排序
if( (a.l/block)==(b.l/block) ){//当左端点位于同一个块时
if( (a.l/block)%2 )//左端点的块序号为奇数时
return a.r<b.r;//按照从小到大排
else//左端点的块序号为偶数时
return a.r>b.r;//按照从大到小排
}
else//当左端点不位于同一个块时
return a.l<b.l;//按照块的位置进行排序
//return (a.l/block)^(b.l/block) ? a.l<b.l : ( ((a.l/block)&1)?a.r<b.r:a.r>b.r );
}
void add(int x) //加的时候先看其之前出现了多少个sum[l-1],再更新当前点
{
ans += cnt[x^k];
cnt[x]++;
}
void del(int x)//减的时候先去掉该点再看其之前sum[l - 1]出现的次数,和加时对应
{
cnt[x]--;
ans -= cnt[x^k];
}
int main()
{
int l,r;
scanf("%d%d%d",&n,&m,&k);
block = sqrt(1.0*n);
a[0] = 0;
for(int i=1;i<=n;i++)
{
scanf("%lld",&a[i]);
a[i] = a[i-1]^a[i];
}
for(int i=1;i<=m;i++)
{
scanf("%d%d",&t[i].l,&t[i].r);
t[i].l -= 1;
t[i].id = i;
}
sort(t+1,t+m+1,cmp);
l = 0,r = 0;
ans = 0;
cnt[0] = 1;
for(int i=1;i<=m;i++)
{
while(l>t[i].l) add(a[--l]);
while(r<t[i].r) add(a[++r]);
while(l<t[i].l) del(a[l++]);
while(r>t[i].r) del(a[r--]);
temp[t[i].id] = ans;
}
for(int i=1;i<=m;i++)
printf("%lld\n",temp[i]);
return 0;
}