HDU - 4857 逃生 拓扑排序(反向建图)

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_41837216/article/details/89742415

HDU - 4857 逃生

糟糕的事情发生啦,现在大家都忙着逃命。但是逃命的通道很窄,大家只能排成一行。 

现在有n个人,从1标号到n。同时有一些奇怪的约束条件,每个都形如:a必须在b之前。 
同时,社会是不平等的,这些人有的穷有的富。1号最富,2号第二富,以此类推。有钱人就贿赂负责人,所以他们有一些好处。 

负责人现在可以安排大家排队的顺序,由于收了好处,所以他要让1号尽量靠前,如果此时还有多种情况,就再让2号尽量靠前,如果还有多种情况,就让3号尽量靠前,以此类推。 

那么你就要安排大家的顺序。我们保证一定有解。

Input

第一行一个整数T(1 <= T <= 5),表示测试数据的个数。 
然后对于每个测试数据,第一行有两个整数n(1 <= n <= 30000)和m(1 <= m <= 100000),分别表示人数和约束的个数。 

然后m行,每行两个整数a和b,表示有一个约束a号必须在b号之前。a和b必然不同。

Output

对每个测试数据,输出一行排队的顺序,用空格隔开。

Sample Input

1
5 10
3 5
1 4
2 5
1 2
3 4
1 4
2 3
1 5
3 5
1 2
Sample Output
1 2 3 4 5

题解:

举个例子如图:

如果你用优先队列拓扑排序得到的是:3 5 6 4 1 7 8 9 2 0

但是正确答案为 6 4 1 3 9 2 5 7 8 0 这样使得小的(1)尽量在前面。

这里我们可以得到 前面的小的不一定排在前面,但是有一点后面大的一定排在后面。

我们看 6和3不一定3排在前面,因为6后面连了一个更小的数字1能使得6更往前排。

在看 2和 8,8一定排在后面,因为8后面已经没有东西能使它更往前排(除了0)。

所以最后我们的做法就是 建立一个反向图,跑一边字典序最大的拓扑排序,最后再把这个排序倒过来就是答案了。

题解转自:https://blog.csdn.net/qq_41713256/article/details/80805338


 

#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<bitset>
#include<cstdio>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
#define mod 1000000007
using namespace std;
typedef long long ll;
const int maxn = 1e5+10;
struct node
{
    int v;
    int next;
}e[maxn];
int in[maxn];  //入度
int head[maxn];
int ans[maxn];
int n,m,cnt,tot;
void init()
{
    cnt = tot = 0;
    memset(in,0,sizeof(in));
    memset(head,-1,sizeof(head));
}
void add(int u,int v)
{
    e[cnt].v = v;
    e[cnt].next = head[u];
    head[u] = cnt++;
}
void tuopu()
{
    priority_queue<int ,vector<int> ,greater<int> > q;   //大根堆
    for(int i=1;i<=n;i++)
    {
        if(in[i]==0)
            q.push(i);
    }

    while(!q.empty())
    {
        int u = q.top();
        q.pop();
        ans[tot++] = u;
        for(int i=head[u] ; i!=-1 ; i=e[i].next)
        {
            int v = e[i].v;
            in[v]--;
            if(in[v]==0)
                q.push(v);
        }
    }
}
int main()
{
    int t;
    int u,v;
    scanf("%d",&t);
    while(t--)
    {
        init();
        scanf("%d%d",&n,&m);
        for(int i=0;i<m;i++)
        {
            scanf("%d%d",&u,&v);
            add(v,u);   //反向建图
            in[u]++;
        }
        tuopu();
        for(int i=tot-1;i>0;i--)
            printf("%d ",ans[i]);
        printf("%d\n",ans[0]);

    }

    return 0;
}

 

展开阅读全文

没有更多推荐了,返回首页