文章目录
前言
本文介绍通信原理中容易混淆的一个概念,波特率和比特率的关系。因此先从码元的概念讲起,接着介绍波特率、比特率、频带利用率等相关概念,最后介绍了数字通信系统的可靠性指标。
一、码元
码元是承载信息量的基本信号单位,在数字通信中常用时间间隔相同的符号来表示一个二进制数字,这样的时间间隔内的信号称为(二进制)码元。而这个间隔被称为码元长度。值得注意的是当码元的离散状态有大于2个时(如M大于2个)时,此时码元为 M 进制码元。
举例:假定基带信号为 10101100011011101
- 直接传送。也就是上面每位二进制数都是一个码元,这种方式被称为二进制码元。发送的过程就是:1、0、1、0……,传多少个数字就要用多少个码元。每个码元的信息量是 1bit(用自信息量的公式计算即可)。
- 如果两两一组,发送的过程就是:10、10、11……,两个二进制数为一个码元,这种方式被称为四进制码元。每个码元的信息量是 2bit。
- 将上面的信号3个一组,分为 101、011、000、110、111、010……,这被称为八进制码元,每个码元为 3bit。
- 类比下去,n 个二进制数一组,就能构成 M 进制码元,其中 M= 2 n 2^n 2n。
那我们为什么用时间间隔来定义码元长度呢?因为每个码元的信息量确定了,对于同一个信道,单位时间能传输的信息量是固定的,所以每个码元的传输时间也就随之固定了。
一个码元就是一个脉冲信号,一个脉冲信号有可能携带 1bit 数据,也有可能携带 2bit 数据、4bit 数据!你发送一个脉冲信号,如果就可以携带 4bit 数据,肯定发送速率更快啊!
二、码元传输速率 R B R_B RB(传码率、波特率)
- 定义:每秒传送的码元个数
- 单位:波特(Baud)
- 计算:若一个码元的时间长度为 T s T_s Ts秒,则 R B = 1 T s R_B=\frac {1} {T_s} RB=Ts1
例如: T B T_B TB=1 ms,即1秒内传输1000个码元,则 R B R_B RB = 1000 Baud
三、信息传输速率 R b R_b Rb(传信率,比特率)
- 定义:每秒传递的比特数(信息量)
- 单位:比特/秒(bit/s),简记为 b/s 或 bps
四、 R B R_B RB 和 R b R_b Rb的关系——H(信源的熵) 为纽带
H = ∑ i = 1 M p ( x i ) log 2 1 p ( x i ) (b/符号) H = \sum_{i=1}^{M}p(x_i) \log_2^\frac{1}{p(x_i)} \text {(b/符号)} H=i=1∑Mp(xi)log2p(xi)1(b/符号)
R b R_b Rb = R B ⋅ H R_B \cdot H RB⋅H,等概率时, R b R_b Rb = R B ⋅ log 2 M R_B \cdot \log_2^M RB⋅log2M
当 M = 2 时(即二进制码元),
R
b
R_b
Rb =
R
B
R_B
RB
当 M > 2 时,
R
b
R_b
Rb >
R
B
R_B
RB
五、频带利用率——把 B 与传输速率联系起来
1、概念
定义为单位带宽内的传输速率,即
η
=
R
B
B
(
B
a
u
d
/
H
z
)
\eta=\frac{R_B}{B}{(Baud/Hz)}
η=BRB(Baud/Hz)
η
b
=
R
b
B
(
b
p
s
/
H
z
)
\eta_b=\frac{R_b}{B} {(bps/Hz)}
ηb=BRb(bps/Hz)
η
b
=
η
⋅
log
2
M
\eta_b=\eta \cdot \log_2^M
ηb=η⋅log2M
2、举例
那么请看下面的问题,请问哪个系统的有效性好:
A 系统:2000 b/s,占用 2000 Hz 的带宽
B 系统:1500 b/s,占用 1000 Hz的带宽
答:由上面的公式不难计算 A 系统单位赫兹(1Hz)的传输速率是1 b/s,B系统单位赫兹(1Hz)的传输速率是1.5 b/s。所以同样用 1Hz 带宽传输信息,B 传输的更快,B 更有效。
六、有效性指标关系图
比特率和波特率他们之间的关系靠熵来联系,而频带利用率它又把传输速率和传输带宽联系起来了,两个频带利用率之间的关系也是靠熵来联系,等概时,熵有最大值,即进制数的对数。
七、数字通信系统的可靠性指标
1、误码率
P e = 错误码元数 传输总码元数 = N e N P_e=\frac{错误码元数}{传输总码元数}=\frac{N_e}{N} Pe=传输总码元数错误码元数=NNe
2、误信率(误比特率)
P b = 错误比特数 传输总比特数 = I e I P_b=\frac{错误比特数}{传输总比特数}=\frac{I_e}{I} Pb=传输总比特数错误比特数=IIe
二进制:
P
b
=
P
e
P_b=P_e
Pb=Pe;
M 进制:
P
b
<
P
e
P_b<P_e
Pb<Pe
具体原因可参考下面的例题:
可以看到从二进制码元变成四进制码元时,
P
e
P_e
Pe不变,
P
b
P_b
Pb减半。
我的qq:2442391036,欢迎交流!