联邦学习实战
文章平均质量分 97
自学《联邦学习实战》,包括FATE的实战以及应用。
范星星
这个作者很懒,什么都没留下…
展开
-
二、 FATE实战:实现横向逻辑回归任务的训练及预测
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、数据集描述二、使用步骤1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、数据集描述示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。二、使用步骤1.引入库代码如下(示例):im原创 2021-06-16 19:30:04 · 6386 阅读 · 11 评论 -
一、用Python从零实现横向联邦图像分类
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录用Python从零实现横向联邦图像分类一、环境配置1. 下载Anaconda2. 下载显卡对应的CUDA3. 安装cuDNN4. 配置pytorch-gpu环境二、用Python从零实现横向联邦图像分类1. 运行代码2. 服务器端3. 客户端4. 聚合5. 联邦学习与中心化训练的效果对比6. 联邦学习在模型推断上的效果对比总结用Python从零实现横向联邦图像分类联邦学习是一种新型的、基于数据隐私保护技术实现的分布式训练范式,原创 2021-06-05 17:07:20 · 19035 阅读 · 25 评论