零基础的同学学习大数据开发不能急于求成,要分阶段分步骤来一步步完成,分享一下大数据的学习路线是什么?小白该怎么学习大数据呢,大概可以分为四步:
第一个阶段:了解大数据的基本概念
首先,学习一门课程的时候,要对这门课程有一个简单的了解,比如说,要先学习这门课程的
一些专业的术语,学习一些入门概念知道这么课程是做什么的,主要的学习知识有哪些。那么
学习大数据就必须知道什么是大数据,一般大数据的运用领域是那些,避免自己在对大数据一
无所知的情况下就开始盲目学习。大数据学习资料分享群868847735
第二个阶段:学习计算机的编程语言
对于零基础的小伙伴们来说,开始入门可能并不是那么容易,需要学习大量的理论知识,阅读
枯燥的教材。因为要掌握一门计算机编程语言,还是很难的。大家都知道计算机编程语言有很
多,比如:R,C++,Python,Java等等。
第三阶段:大数据有关的学习课程
经过了前两阶段的基础学习后,我们对编程语言也基本掌握了,接下来就可以进行大数据部分
的课程学习了。在这里小编要特别提醒大家:行业真正大数据,82%主讲都是hadoop、
spark生态体系、storm实时开发,初学者请务必认清你要学的是不是真正大数据!
第四个阶段:项目实战阶段
实战训练可以帮助我们更好的理解所学的内容,同时对相关知识加强记忆。在以后的实际运用
中,可以更快的上手,对于相关知识的使用方法也有了经验。
世上无难事只怕有心人,无论你是有基础也好还是没基础也好,只要你认真学习大数据就一定
会学好。
第一:Linux理论
(1)Linux基础;
(2)Linux-shell编程;
(3)高并发:lvs负载均衡;
(4)高可用&反向代理
第二:Hadoop理论
(1)hadoop-hdfs理论;
(2)hadoop-hdfs集群搭建;
(3)hadoop-hdfs 2.x & api ;
(4)hadoop-MR理论 ;
(5)hadoop-MR开发分析;
(6)hadoop-MR源码分析 ;
(7)hadoop-MR开发案例
第三:Hive理论
(1)Hive介绍以及安装 ;
(2)Hive实战
第四:HBase
(1)HBase介绍以及安装 ;
(2)HBase调优
第五: redis理论
(1)redis类型 ;
(2) redis高级
第七: Scala语法
(1)Scala语法介绍;
(2)scala语法实战
第八阶段: Spark理论
(1)Spark介绍;
(2)Spark代码开发流程 ;
(3)Spark集群搭建;
(4) Spark资源调度原理;
(5)Spark任务调度;
(6)Spark案例;
(7)Spark中两种最重要shuffle;
(8)Spark高可用集群的搭建;
(9)SparkSQL介绍;
(10) SparkSQL实战 ;
(11)SparkStreaming介绍;
(12)SparkStreaming实战
要以实践操作为主,结合项目的实践检测,在做项目的过程中发现bug解决bug才能掌握住技术的本身核心要点,希望能帮到您.