深度学习--CNN

什么是CNN–李宏毅

CNN(Convalutional Neural Network)卷积神经网络。就是神经网络,模型比DNN简单一点。对之前的完整的神经网络进行了处理。
常用到图像处理

Why CNN for Image?

  • 一些参数可能很小,不需要把整个图片都放进神经网络
  • 同样的pattern可能出现在图的不同位置。并不需要两个东西,公用一组参数就行了。
  • 把图片变小,不影响识别,减少了参数。subsample

The whole CNN

Created with Raphaël 2.2.0 input Convolution MaxPooling Convolution MaxPooling Flatten Feed forward network output

CNN-Convolution

一个Filter1放在图片上做内积,一直平移上上下下左左右右。直到把整张图跑完。最后得到新矩阵。Filter2、Filter3、、、最后所有的放在一起叫做Feature Map。
如果是彩色图片,比如RGB有三个通道,把三个通道都处理了就行了。
李宏毅的PPT截图:
李宏毅的PPT截图

convolution VS Fully Connected

卷积和全连接的神经网络到底有什么关系,各有什么特点

卷积:其实就是一个Fully Connected拿掉一些位

convolution VS Fully Connected

Max Polling

Max Pooling是什么

Max Pooling

Flatten

就是把数据拉直变成一个向量,放到Fully Connected Feed forward network里面。可以看一下李宏毅的PPT,我不想粘贴图片了。

上课例子:CNN in Keras

#输入Filter是25个3*3的,输入的图片是单色1*28*28
mode12.add(Convolution2D(25,3,3),input_shape=(1,28,28))
#得到25*26*26
# Max Pooling 是2*2的size
mode12.add(MaxPooling2D((2,2)))
#得到25*23*13
mode12.add(Convolution2D(50,3,3))
# 得到50*11*11 注意卷积之后因为卷积核Filter是3*3的所有,尺寸减2
mode12.add(MaxPooling2D((2,2)))
#得到50*5*5
#Flatten 把他拉直 变成50*5*5=1250的一个向量
mode12.add(Flatten())
#放到Feed forward network里面.........
#..........省略

But what dose CNN learn ?

CNN、神经网络到底原理是什么,凭什么相信它的结果?或许正是因为这样才叫人工智能,要是都一清二楚,就看起来不那么智能了。

没听懂,但是得到一个结论,Deep Neural Network are easily foolished

Deep Dream 的精神

把参数调大,夸大化它看到的东西。
Deep Dream

Deep Style

把照片变成一种艺术风格的图片
A Neural Algorithm of Artistic Style

More Application :Playing Go

Why CNN for playing GO?

CNN应该用到什么场合

  • Some patterns are much smaller than the whole image.
  • The same patterns appear in different regions.
  • Subsampling the pixels will not change the object.但是Go使用的CNN,为什么,因为它把MaxPooling这个架构去掉了。要灵活使用,不要死脑筋。

More Application :Speech

把Frequency-time的数据轴当成图片来处理。本质还用CNN思想,Filter运动方向不同。
运动方向的原因

More Application :Text

把数据改成满足CNN的情况。Filter运动方向不同
运动方向的原因

TO learn more

visualization:…不想写 了
机器画图:PixelRNN VAE GAN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值