leetcode 26 : Remove Duplicates from Sorted Array
题目链接: https://leetcode-cn.com/problems/remove-duplicates-from-sorted-array/
难度: 简单
归类 : 数组操作
题目:
给定一个排序数组,你需要在 原地 删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度。
不要使用额外的数组空间,你必须在原地修改输入数组并在使用 O(1) 额外空间的条件下完成。
示例:
示例 1:
给定数组 nums = [1,1,2],
函数应该返回新的长度 2, 并且原数组 nums 的前两个元素被修改为 1, 2。
你不需要考虑数组中超出新长度后面的元素。
示例 2:
给定 nums = [0,0,1,1,1,2,2,3,3,4],
函数应该返回新的长度 5, 并且原数组 nums 的前五个元素被修改为 0, 1, 2, 3, 4。
你不需要考虑数组中超出新长度后面的元素。
解法:
主要使用c++和python等两种语言进行了解答,以及经典题解和尝试改进的最优/最简洁解法。
个人解法
设置curValue = nums[0]和curIndex=1,寻找下一个不等于curValue的值a,令curValue =a, nums[curIndex] = curValue,并使得curIndex加1。
C++解法
#c++解法
class Solution {
public:
int removeDuplicates(vector<int>& nums) {
int len = nums.size();
if(len < 2) return len;
int curValue = nums[0];
int curIndex = 1;
for(int i = 1; i < len; i++){
if(nums[i] != curValue){
curValue = nums[i];
nums[curIndex++] = curValue;
}
}
return curIndex;
}
};
时间复杂度: O(N)
空间复杂度: O(1)
提交结果:
执行用时 :16 ms, 在所有 C++ 提交中击败了83.54%的用户
内存消耗 :7.6 MB, 在所有 C++ 提交中击败了100.00%的用户
python解法
#python解法
class Solution:
def removeDuplicates(self, nums: List[int]) -> int:
length = len(nums)
if length < 2:
return length
curValue = nums[0]
curIndex = 1
for i in range(length):
if curValue != nums[i]:
curValue = nums[i]
nums[curIndex] = curValue
curIndex += 1
return curIndex
时间复杂度: O(N)
空间复杂度: O(1)
提交结果:
执行用时 :36 ms, 在所有 Python3 提交中击败了98.55%的用户
内存消耗 :14.8 MB, 在所有 Python3 提交中击败了8.16%的用户
题解优解
此题要求空间复杂度为O(1),在原始数组上进行修改删除操作。单指针法和双指针法均可以解决。
附上力扣官方提供的双指针法解决,代码非常优雅。
数组完成排序后,我们可以放置两个指针i和j,其中i是慢指针,而j是快指针。只要 nums[i] = nums[j],我们就增加j以跳过重复项。
当我们遇到 nums[j]不等于nums[i]时,跳过重复项的运行已经结束,因此我们必须把它(nums[j])的值复制到 nums[i + 1]。然后递增 i,接着我们将再次重复相同的过程,直到j到达数组的末尾为止。
#c++解法
class Solution {
public:
int removeDuplicates(vector<int>& nums) {
if (nums.size() == 0) return 0;
int i = 0;
for (int j = 1; j < nums.size(); j++) {
if (nums[j] != nums[i]) {
i++;
nums[i] = nums[j];
}
}
return i + 1;
}
};
时间复杂度: O(N)
空间复杂度: O(1)
提交结果:
执行用时 :16 ms, 在所有 C++ 提交中击败了83.54%的用户
内存消耗 :7.7 MB, 在所有 C++ 提交中击败了100.00%的用户
尝试改进的最优解法
本题较为简单,无更优解法。调库算法仅供娱乐,学技术还是得用底层数据结构。