监督学习的Logistic回归算法

Logistic

函数原型

h θ ( X ) = 1 1 + e − θ T X . . . 称 h θ ( X ) 为 y = 1 的 概 率 。 h_\theta(X)=\frac{1}{1+e^{-\theta^TX}}...称h_\theta(X)为y=1的概率。 hθ(X)=1+eθTX1...hθ(X)y=1

决策界限的定义

根 据 函 数 表 达 式 可 知 当 z > = 0 时 y > = 0.5 当 z < 0 时 y < 0.5... z = θ T X , y = h θ ( X ) 根据函数表达式可知当z>=0时y>=0.5当z<0时y<0.5...z=\theta^TX,y=h_\theta(X) z>=0y>=0.5z<0y<0.5...z=θTX,y=hθ(X)
决策界限
故 直 线 z = θ T X 为 决 策 界 限 故直线z=\theta^TX为决策界限 线z=θTX

代价函数

线性回归的代价函数为:
J ( θ ) = 2 1 m ∑ i = 1 m ( h θ ( x i ) − y ( x i ) ) 2 J(\theta)=2\frac{1}{m}\sum_{i=1}^{m}(h_\theta(x^i)-y(x^i))^2 J(θ)=2m1i=1m(hθ(xi)y(xi))2
我们另:
J ( θ ) = 1 m ∑ i = 1 m C o s t ( h θ ( x i ) , y ( x i ) ) J(\theta)=\frac{1}{m}\sum_{i=1}^{m}Cost(h_\theta(x^i),y(x^i)) J(θ)=m1i=1mCost(hθ(xi),y(xi))
C o s t 为 : Cost为: Cost
C o s t ( h θ ( x i ) , y ( x i ) ) = { − l o g ( h θ ( x ) ) i f y = 1 − l o g ( 1 − h θ ( x ) ) i f y = 0 Cost(h_\theta(x^i),y(x^i))=\begin{cases} -log(h_\theta (x))& \text if&y=1\\-log(1-h_\theta (x))& \text if&y=0\end{cases} Cost(hθ(xi),y(xi))={log(hθ(x))log(1hθ(x))ifify=1y=0
为什么这样选择?

− l o g ( 1 − h θ ( x ) ) 图 像 为 : -log(1-h_\theta (x))图像为: log(1hθ(x))

1
其中 h θ ( X ) = 1 1 + e − θ T X . h_\theta(X)=\frac{1}{1+e^{-\theta^TX}}. hθ(X)=1+eθTX1.
h θ ( x ) h_\theta (x) hθ(x)无限靠近与0时,代价函数为无穷大。
h θ ( x ) = 0 表 示 y = 1 的 概 率 为 0 , 与 条 件 y = 1 完 全 矛 盾 。 故 给 该 算 法 加 大 惩 罚 。 h_\theta (x)=0表示y=1的概率为0,与条件y=1完全矛盾。故给该算法加大惩罚。 hθ(x)=0y=10y=1

h θ ( x ) h_\theta (x) hθ(x)无限靠近与1时,代价函数为0。
h θ ( x ) = 1 表 示 y = 1 的 概 率 为 100 % , 与 条 件 y = 1 完 全 符 合 。 h_\theta (x)=1表示y=1的概率为100\%,与条件y=1完全符合。 hθ(x)=1y=1100%y=1

− l o g ( 1 − h θ ( x ) ) 图 像 为 : -log(1-h_\theta (x))图像为: log(1hθ(x))

2
证明方式与图1类似…

合并代价函数

J ( θ ) = 1 m ∑ i = 1 m ( − y l o g ( h θ ( x i ) ) − ( 1 − y ) l o g ( 1 − h θ ( x i ) ) ) J(\theta)=\frac{1}{m}\sum_{i=1}^m(-ylog(h_{\theta}(x^i))-(1-y)log(1-h_{\theta}(x^i))) J(θ)=m1i=1m(ylog(hθ(xi))(1y)log(1hθ(xi)))

使用梯度下降法迭代

公式与线性回归公式相同。
证明参考:https://blog.csdn.net/qq_29663489/article/details/87276708

多分类问题

3
思想:二分,归类于y=1概率的的一类。
如图,三个函数同时处理,得到 h θ ( X ) h_\theta(X) hθ(X),故点归类于 h θ ( X ) h_\theta(X) hθ(X)大的一类。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值