一个基于Python的情感分析案例

本文介绍了一个基于Python的情感分析案例,通过爬取京东商城某品牌红酒评论,进行情感极性分析,旨在区分好评与差评。示例展示了好评和差评的评论,并利用结巴分词工具进行精确、全和搜索引擎模式的分词。接着,通过卡方统计选择特征词,并使用scipy、numpy、sklearn等模块进行数据分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

情感分析:又称为倾向性分析和意见挖掘,它是对带有情感色彩的主观性文本进行分析、处理、归纳和推理的过程,其中情感分析还可以细分为情感极性(倾向)分析,情感程度分析,主客观分析等。

情感极性分析的目的是对文本进行褒义、贬义、中性的判断。在大多应用场景下,只分为两类。例如对于“喜爱”和“厌恶”这两个词,就属于不同的情感倾向。

背景交代:爬虫京东商城某一品牌红酒下所有评论,区分好评和差评,提取特征词,用以区分新的评论。

示例1(好评)

è¿éåå¾çæè¿°

示例2(差评)

è¿éåå¾çæè¿°

读取文本文件

def text():
     f1 = open('E:/工作文件/情感分析案例1/good.txt','r',encoding='utf-8') 
     f2 = open('E:/工作文件/情感分析案例1/bad.txt','r',encoding='utf-8')
     line1 = f1.readline()
     line2 = f2.readline()
     str = ''
     while line1:
         str += line1
         line1 = f1.readline()
     while line2:
         str += line2
         line2 = f2.readline()
     f1.close()
     f2.close()
     return str

把单个词作为特征

def bag_of_words(words):
     return dict([(word,True) for word in words])

print(bag_of_words(text()))

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值