机器学习
程适场
这个作者很懒,什么都没留下…
展开
-
LDA在多分类、降维中的应用以及python实现
⟺ \iff⟺Sw−1Sbθ=λθ(6)\textbf{S}_{w}^{-1}\textbf{S}_b\theta=\lambda\theta\tag{6}Sw−1Sbθ=λθ(6)此时,λ\lambdaλ为Sw−1Sb\textbf{S}_{w}^{-1}\textbf{S}_bSw−1Sb的特征值,θ\thetaθ为对应的特征向量,倘若λ\lambdaλ存在多个,选取λ\lambdaλ较大的特征值对应的特征向量,证明如下:Sw\textbf{S}_wSw为实对称矩阵,那么存在Sw原创 2020-08-26 10:53:32 · 4394 阅读 · 0 评论 -
线性判别分析(LDA)二分类的原理及python实现
符号说明问题引入已知一个样本存在两个属性,根据属性的不同可以分为三个类别,现需要依据某个样本的属性值判断该样本属于哪一个类别。属性1属性2类别4212412313614419100680950870108081-171-19-3-180-170-1...原创 2020-08-24 17:58:50 · 4993 阅读 · 1 评论 -
logistics regression逻辑回归
逻辑回归常常用于二分类问题中。预备知识sign(x)={1x≥00x<0(1)sign(x)=\left\{\begin{matrix}1&x\geq{0}\\0&x\lt{0}\end{matrix}\right.\tag{1}sign(x)={10x≥0x<0(1)原创 2020-08-19 20:35:06 · 264 阅读 · 0 评论 -
梯度下降法推导与改进
符号说明基本思想梯度下降法的基本思想非常简单,想象一下自己在一个盆地中,现在需要进入到盆地最底部,那么最简单的方式就是一直往下走,直到不能再向下走为止,此时就到达了盆地最底部。那么对于一个复杂的函数而言,找到一个合适的公式去描述这一简单的思想,就可以求出函数的极小值位置了。算法推导高维函数带有佩亚诺余项的一阶泰勒展开式如下f(x)=f(x0)+▽f(x0)T(x−x0)+o(∣∣x−x0∣∣)f(\textbf{x})=f(\textbf{x}_0)+\triangledown{f(\text原创 2020-08-18 19:14:24 · 301 阅读 · 0 评论 -
利用图像理解牛顿法
符号说明f(x)f(\textbf{x})f(x)表示函数,某个x\textbf{x}x向量对应的值是个常量。x\textbf{x}x表示函数空间中在各个轴上的未知变量,n维。以(x,y,z)三维空间举例子,x\textbf{x}x表示x,y两个轴上的变量,f(x)f(\textbf{x})f(x)代表在z轴上的映射,是一个常量。以后用xix_ixi表示非f(x)f(\textbf{x})f(x)值所在的轴,y表示在f(x)f(\textbf{x})f(x)值所在的轴。举个例子,三维空间表示成(原创 2020-08-16 11:56:42 · 635 阅读 · 0 评论 -
机器学习入门以及Linear regression(线性回归)
线性回归几乎是所有机器学习的入门课程,但是由于符号定义表达方式不同,造成了很多人在入门时期感觉跟多向量非常矛盾。比如所行向量还是列向量,xi\textbf{x}_ixi以及xj\textbf{x}_jxj究竟是行还是列等等,本篇将先介绍向量以及列表相关的例子,然后再介绍线性回归的内容。入门解惑对于大多数教程而言,一份统计表的形式往往如下所示:示例1:示例1为默认格式,也是大多数博客或文章采用的格式。属性1属性2属性3属性4…元组1元组2原创 2020-08-06 10:35:29 · 278 阅读 · 0 评论 -
深入理解PCA(主成分分析法)算法
问题引入现有某商店分析影响销售额的因素有哪些,做了以下调查。某月日期x1\textbf{x}_1x1:{1,2,3}/天空气质量x2\textbf{x}_2x2:{0.1,0.6,0.3}/等级上班时间x3\textbf{x}_3x3:{8,8.5,9}/时假装目前这三个影响因素太多,需要降维处理。如果要降到2维,最直接的做法就是将其中一个因素xi\textbf{x}_ixi去除,然后分析剩余的两个,但是这种做法过于粗暴,是否存在一种更加合理的方法去处理。----------------原创 2020-08-02 14:52:49 · 662 阅读 · 0 评论