摘要
我们介绍了一个全面的公共数据集,NightOwls,用于夜间行人检测。与白天条件相比,夜间的行人检测更具挑战性,因为夜间的光照变化和低、反射、模糊和对比度变化。 推出该数据集的意义
nighttowls包含了27万9千帧,40个序列,由一个行业标准的相机在3个国家的夜间记录,包括不同的季节和天气条件。所有的帧都是完全注释的,并包含额外的对象属性,如遮挡、姿态和难度,以及跟踪信息,以在多个帧中识别相同的对象。包含了大量用于评估检测器鲁棒性的背景帧,一个用于局部超参数调优的验证集,以及一个用于在提交服务器上进行中央评估的测试集。详细介绍该数据集
作为夜间行人检测的benchmark,我们比较了ACF、Checkerboards、Faster R-CNN、RPN+BF和SDSRCNN的性能。特别是,我们证明了最先进的行人检测器在夜间的表现并不好,即使是在针对夜间数据进行专门训练的情况下,我们还表明昼夜检测的准确性存在明显差距。实验验证该数据集的难度
我们相信,一个全面的夜间数据集的可用性可以进一步推进行人检测的研究,以及一般的夜间目标检测和跟踪。
数据集
1.数据集的难点:通过图片来展示