大数据与机器学习
文章平均质量分 77
大数据学习记录
Zero-place
在校大学生正在追赶互联网大潮!
展开
-
机器学习-泛化能力
目录1.什么是泛化能力2.什么是好的机器学习模型的提出3.泛化误差4.模型泛化能力的评价标准4.提高泛化能力5.举例6.相关引用文献1.什么是泛化能力百度百科解释:机器学习算法对新鲜样本的适应能力。更加具体的解释:学习到的模型对未知数据的预测能力,这个未见过的测试数据必须是和训练数据处于同一分布,不在同一分布的数据是不符合独立同分布假设的(对同一规律不同的数据集的预测能力)。通常通过测试误差来评价学习方法的泛化能力。通俗+形象解释:就是通过数据训练学习的模型,.原创 2021-02-21 00:13:17 · 20862 阅读 · 2 评论 -
K-means算法
K-means算法简介k-means算法是一种基于划分的聚类算法,过程为无监督过程。以距离作为数据对象间相似性度量的标准,即数据对象间的距离越小,则它们的相似性越高,则它们越有可能在同一个类簇。数据对象间距离的计算有很多种,k-means算法通常采用欧氏距离来计算数据对象间的距离。聚类大致步骤与结果(图)通俗解释:将没有标注(不含标签) 的数据进行聚类算法,就能得到分过组的分类数据。算法具体步骤1、自主选择要划分为类的个数k;2、第一次将随机生成k个数据点作为聚类中心;2、计算其原创 2021-01-16 21:39:00 · 576 阅读 · 0 评论