【神经网络】python实现神经网络(五)——误差反向传播的代码实现

        承接上篇文章的理论知识(【神经网络】python实现神经网络(四)——误差反向传播的基础理论),现在我们来介绍如何用代码实现。

一.点乘层Affine的反向传播

        基本没有什么需要特别注意的地方,都是按照理论来

class Affine:
    def __init__(self,W,b):
        self.W = W
        self.b = b
        self.x = None
        self.dW = None
        self.db = None

    def forward(self, x):
        self.x = x

        out = np.dot(x, self.W) + self.b
        return out

    def backward(self, dout):
        dx = np.dot(dout, self.W.T)

        self.dW = np.dot(self.x.T, dout)
        self.db = np.sum(dout, axis=0)
        return dx

二.激活函数Sigmod/Relu的反向传播

        首先是Sigmod激活函数的代码实现:

class
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

师兄师兄怎么办

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值