笔记
qq_41889395
这个作者很懒,什么都没留下…
展开
-
Tensorflow基础
Tensorflow基础1. 深度学习介绍机器学习与深度学习的区别机器学习深度学习算法是浅层的神经网络图像处理:卷积神经网络自然语言处理:循环神经网络用的是深度神经网络领域主要用于做分类和回归的预测图像处理,语音识别等等深度学习的算法本身设计复杂,数据量大,特征多,因此运行时间长。CPU:运行操作系统,主要处理业务,计算能力不是特别突出。GPU...原创 2018-11-19 08:26:52 · 140 阅读 · 0 评论 -
聚类算法
聚类算法聚类的概念:无监督问题:我们手里没有标签了聚类:相似的东西分到一组,跟分类问题相似。刚开始的数据集上没有颜色的标记,也没有告诉我们绿色的是哪些,红色的是哪些,蓝色的是哪些,根据一种相似度度量的方式,把相似的东西归到一类。从图中可以看出,数据集明显被分为3类。难点:如何评估,如何调参1. K-MEANS算法基本概念:要得到簇的个数,需要指定K值,例如k=3,把数...原创 2018-11-30 16:43:13 · 264 阅读 · 0 评论 -
逻辑回归公式推导
逻辑回归逻辑回归到底是分类还是回归?它是经典的二分类算法机器学习算法选择:先逻辑回归再用复杂的,能简单的还是用简单的。逻辑回归的决策边界:可以是非线性的。激活函数:sigmoid函数公式:图像:自变量取值为任意实数,值域为[0,1]将任意的输入映射到了[0,1]区间,我们在线性回归中可以得到一个预测值,再将该值映射到Sigmoid函数中,这样就完成了由值到概率的转换...原创 2018-11-27 10:53:04 · 208 阅读 · 0 评论 -
线性回归公式推导
线性回归机器学习的有监督算法分为分类和回归两种。回归:通过输入的数据,预测出一个值,如银行贷款,预测银行给你贷多少钱。分类:通过输入的数据,得到类别。如,根据输入的数据,银行判断是否给你贷款。举个例子工资年龄额度40002520000800030700005000283500075003350000120004...原创 2018-11-26 21:14:26 · 285 阅读 · 0 评论 -
贝叶斯原理推导
贝叶斯1. 贝叶斯简介贝叶斯Thomas Bayes,英国数学家贝叶斯方法源于他生前为解决一个“逆概”问题写的一篇文章。贝叶斯要解决的问题:正向概率:假设袋子里面有N个白球,M个黑球,你伸手进去摸一把,摸出黑球的概率有多大?黑球数量/总球数量逆向概率:如果我们事先不知道袋子里黑白球的比例,而是闭着眼睛摸出一个(好几个)球,观察这些取出来的球的颜色之后,那么我们可以就此对袋子...原创 2018-11-29 17:31:23 · 344 阅读 · 0 评论 -
神经网络(一)
神经网络1. 神经网络基础2. 浅层神经网络分析3. 卷积神经网络4. 卷积神经网络MNIST数字图片识别1. 神经网络基础神经网络:想让计算机模拟大脑处理信息的过程。如:有一杯水,手摸一下,收集温度信息,在神经元中进行传递,心中有一个默认值,看是否温度太高,还是太低。感知机最早的基于神经网络的分类问题。有n个数据,通过权重与各数据之间的计算和,比较激活函数结果,得出输出...原创 2018-11-25 19:04:45 · 221 阅读 · 0 评论 -
神经网络(二)
神经网络1. 神经网络基础2. 浅层神经网络分析3. 卷积神经网络4. 卷积神经网络MNIST数字图片识别3. 卷积神经网络深度的神经网络深度神经网络与更常见的单一隐藏层神经网络的区别在于深度,深度学习网络中,每一个节点层在前一层输出的基础上识别一组特定的特征。随着神经网络深度增加,节点所能识别的特征也就越来越复杂。卷积神经网络与简单全连接神经网络的比较全连接神经网络的...原创 2018-11-21 21:17:09 · 278 阅读 · 0 评论 -
线程队列与IO操作(三)
线程队列与IO操作记录,成为更好的自己1. 队列和线程2. 文件读取3. 图片处理3. 图片处理图像基本知识如何识别图片?要把图片的特征值拿出来,机器学习就是靠输入的特征值+目标值来进行分类和回归。一张图片在电脑上显示靠像素,每个图片都是由像素组成的,像素就是图片的特征。如一张图片的长为200,宽为200,像素为:200*200=40000个像素值(特征)单通道:...原创 2018-11-21 21:15:40 · 107 阅读 · 0 评论 -
线程队列与IO操作(二)
线程队列与IO操作记录,成为更好的自己1. 队列和线程2. 文件读取3. 图片处理2. 文件读取1. 文件读取流程构造一个文件队列,把路径+文件放入队列中读取队列内容,不同的文件有不同的读取方式。csv文件:默认读取一行二进制文件:指定一个样本的bytes图片文件:按一张一张的读取解码,读取一个样本的内容批处理2. 文件读取API构造文件队列t...原创 2018-11-21 21:12:39 · 219 阅读 · 0 评论 -
线程队列与IO操作(一)
线程队列与IO操作记录,成为更好的自己1. 队列和线程2. 文件读取3. 图片处理1. 队列和线程IO操作相对于cpu的计算来说,速度较慢。现在要读2G的文件,一次性读取数据,消耗内存。一次性进行训练。关键的问题在于速度慢,训练的模型都在等数据输入到模型中。tensorflow如何读取?多线程,并行的执行任务。队列文件的改善(tfrecords)队列与队...原创 2018-11-21 21:11:17 · 340 阅读 · 0 评论 -
Tensorflow实现线性回归
Tensorflow实现线性回归记录,成为更好的自己线性回归:w1x1+w2x2+…+w_nx_n+bias一个特征一个权值,100个特征100个权值算法策略优化线性回归均方误差梯度下降准备好一个特征和一个目标值。建立模型 随机初始化准备一个权重w,一个偏置b。y_predict=x*w+b模型的参数必须用变量定义,若用张量定义,不会改变...原创 2018-11-21 21:09:25 · 200 阅读 · 0 评论 -
Tensorflow进阶(二)
Tensorflow进阶记录,成为更好的自己1.图2.会话3.张量4.变量5.模型保存和加载6.自定义命令行参数4. 变量变量也是一种op,是一种特殊的张量,能够进行存储持久化,它的值就是张量1. 变量op能够持久化保存,普通张量是不行的。如线性回归中的参数,系数就需要持久化保存。2. 当定义一个变量op的时候,一定要在会话当中去运行初始化变量的创建创建一个...原创 2018-11-21 21:08:39 · 190 阅读 · 0 评论 -
Tensorflow进阶(一)
Tensorflow进阶(一)记录,成为更好的自己1.图2.会话3.张量4.变量5.模型保存和加载6.自定义命令行参数1. 图不管写什么程序,都要先把图建好,写Python程序也是一样的,把业务逻辑理好,再写程序。图默认已经注册好了,定义一张图,相当于是给程序分配内存。图的创建,使用:tf.Gragh()。图中包含了一组op(操作)和tensor(张量)。op:使...原创 2018-11-19 09:40:25 · 121 阅读 · 0 评论 -
matplotlib画折线图
matplotlib画折线图假设一天中每隔两个小时(range(2,26,2))的气温(℃)分别是[15,13,14.5,17,20,25,26,26,27,22,18,15]代码如下:# 导入pyplotfrom matplotlib import pyplot as plt # 数据在X轴的位置,是一个可迭代的对象x = range(2, 26, 2)# 数据在Y轴的位置,...原创 2018-12-16 21:16:46 · 5706 阅读 · 0 评论