一、前言
推荐系统是移动互联网时代非常成功的人工智能技术落地场景之一。
本文我们将从架构设计的角度回顾和讨论推荐系统的一些核心算法模块,重点从离线层、近线层和在线层三个架构层面讨论这些算法。
本文不会讲解一些具体推荐模块的架构设计,但无论什么推荐模块,其逻辑经过拆解后都可以映射到本文的架构体系中,做到触类旁通,举一反三。
二、架构设计概述
架构设计是一个很大的话题,本文这里只讨论和推荐系统相关的部分。更具体地说,我们主要关注的是算法以及其他相关逻辑在时间和空间上的关系——这样一种逻辑上的架构关系。
下面介绍的是一些经过实践检验的架构层面的最佳实践,以及对这些最佳实践在不同应用场景下的分析
。除此之外,还希望能够通过把各种推荐算法放在架构的视角和场景下重新审视,让读者大家对算法间的关系有更深入的理解,从全局的角度看待推荐系统,而不是只看到一个个孤立的算法。
架构设计的本质之一是平衡和妥协。一个推荐系统在不同的时期、不同的数据环境、不同的应用场景下会选择不同的架构,在选择时本质上是在平衡一些重要的点。下面介绍几个常用的平衡点。
2.1 个性化vs复杂度
个性化是推荐系统作为一个智能信息过滤系统的安身立命之本,从最早的热榜,到后来的公式规则,再到著名的协同过滤算法,最后到今天的大量使用机器学习算法,其主线之一就是为用户提供个性化程度越来越高的体验,让每个人看到的东西都尽量差异化,并且符合个人的喜好。
为了达到这一目的,系统的整体复杂度越来越高,具体表现为使用的算法越来越多、算法使用的数据量和数据维度越来越多、机器学习模型使用的特征越来越多,等等。同时,为了更好地支持这些高复杂度算法的开发、迭代和调试,又衍生出了一系列对应的配套系统,进一步增加了整个系统的复杂度。
可以说整个推荐逻辑链条上的每一步都被不断地细化分析和优化,这些不同维度的优化横纵交织,构造出了一个整体复杂度非常高的系统。从机器学习理论的角度来类比,如果把推荐系统整体看作一个巨大的以区分用户为目标的机器学习模型,则可以认为复杂度的增加对应着模型中特征维度的增加,这使得模型的VC维不断升高,对应着可分的用户数不断增加,进而提高了整个空间中用户的个性化程度。这条通过不断提高系统复杂度来提升用户个性化体验的路线,也是近年来推荐系统发展的主线之一。
2.2 时效性 vs 计算量
推荐系统中的时效性概念体现在实时服务的响应速度、实时数据的处理速度以及离线作业的运行速度等几个方面。这几个速度从时效性角度影响着推荐系统的效果,整体上讲,运行速度越快,耗时越少,得到的效果越好。
这是因为响应速度越快,意味着对用户行为、物品信息变化的感知越快,感知后的处理速度越快,处理后结果的反馈就越快,最终体现到用户体验上,就是系统更懂用户,更快地对用户行为做出了反应,从而产生了更好的用户体验。
但这些时效性的优化,带来的是更大的计算量,计算量又对应着复杂的实现逻辑和更多的计算资源。在设计得当的前提下,这样的付出通常是值得的。
时效性优化是推荐系统中非常重要的一类优化方法和优化思路,但由此带来的计算压力和系统设计的复杂度也是必须要面对的。
2.3 时间 vs 空间
时间和空间之间的平衡关系可以说是计算机系统中最为本质的关系之一,在推荐系统中也不例外。时间和空间这一对矛盾关系在推荐系统中的典型表现,主要体现在对缓存的使用上。
缓存通常用来存储一些计算代价较高以及相对静态变化较少的数据,例如用户的一些画像标签以及离线计算的相关性结果等。但是随着越来越多的实时计算的引入,缓存的使用也越来越广泛,常常在生产者和消费者之间起到缓冲的作用,使得二者可以解耦,各自异步进行。例如实时用户兴趣计算这一逻辑,如果没有将之前计算的兴趣缓存起来,那么在每次需要用户兴趣时都要实时计算一次,并要求在较短的时间内返回结果,这对计算性能提出了较高的要求。
但如果中间有一层缓存作为缓冲,则需求方可以直接从缓存中取来结果使用。这在结果的实时性和新鲜度上虽然做了一定的妥协,但却能给性能提升带来极大的帮助。这样就将生产和消费隔离开来,生产者可以根据具体情况选择生产的方式和速度。
当然,仍然可以努力提高生产速度,生产速度越快,缓存给时效性带来的损失就越小,消费者不做任何改动就可以享受到这一提升效果。所以说,这种利用缓存来解耦系统,带来性能上的提升以及开发的便利,也是在推荐系统架构设计中需要掌握的一种通用的思路。
上面介绍的一些基本性原则贯穿着推荐系统架构设计的方方面面,是一些具有较高通用性的思路,掌握这些思路,可以产生出很多具体的设计和方法;反过来,每一种设计技巧或方法,也都可以映射到一个或几个这样的高层次抽象原则上来。这种自顶向下的思维学习方法对于推荐系统的架构设计是非常重要的,并且可以推广到很多其他系统的设计中。
三、系统边界和外部依赖
架构设计的第一步是确定系统的边界
。
所谓边界,就是区分什么是这个系统要负责的,也就是边界内的部分,以及什么是这个模型要依赖的,也就是边界外的部分。划分清楚边界,意味着确定了功能的边界以及团队的边界,能够让后期的工作都专注于核心功能的设计和实现。反之,如果系统边界没有清晰的定义,可能会在开发过程中无意识地侵入其他系统中,形成冗余甚至矛盾,或者默认某些功能别人会开发而将其忽略掉。无论哪种情况,都会影响系统的开发乃至最终的运转。
系统边界的确定,简单来说,就是在输入方面确定需要别人给我提供什么,而在输出方面确定我要给别人提供什么。
在输入方面,就是判断什么输入是需要别人提供给我的,要把握的主要原则包括:这