用CNN+RNN实现image-to-text任务:原理讲解和代码实现

本文介绍了一种使用预训练的VGG16作为编码器和LSTM作为解码器的模型,用于image-to-text任务。在CNN编码图像后,LSTM解码器通过预处理步骤(如添加开始和结束标记、padding、词到索引和embedding)将向量解码成文本。实验基于COCO数据集,并提供了代码和预训练模型链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:text-image配对数据集并不是珍贵的,OpenAI为了训练GLIDE等大模型,曾经使用十亿量级的text-image数据集,而这些数据集主要是从互联网上爬取过滤的。image-to-text作为image-to-text的镜像问题,相关的研究少了很多。我们可以用CNN+LSTM搭建一个成功的模型用于完成这一任务。

目录

方法详解

整体流程

编码器:CNN

解码器:LSTM

数据集下载

实验结果

代码解读


方法详解

整体流程

目前的模型是受Sequence2Sequence的启发,Seq2Seq是自然语言处理中机器翻译中常用的序列模型。利用循环神经网络保留时间信息,将文本嵌入到向量空间。在传统机器翻译中,输入和输出是不同语言的文本。因此,RNN被用作Sequence2Sequence模型中的编码器/解码器。编码器将输入文本编码为公共向量空间,解码器将向量空间解码以生成输出文本。对于图像描述,输入是

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉迷单车的追风少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值