CLIPDraw:基于CLIP的text-to-vector生成器

CLIPDraw使用预训练的CLIP模型,通过梯度下降优化贝塞尔曲线来生成与文本描述匹配的绘图。该方法不需额外训练,可产生不同风格的创意绘图,并通过调整描述词控制风格和行为。CLIPDraw通过图像增强避免产生对抗性图像,确保生成的绘图人类可识别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:CLIP大火的2020年和2021年,引爆了生成式模型的各个领域。今天介绍一项工作,专门用来text-to-vector操作,能够生成不同艺术风格的绘图,不需要任何训练的就能取得非常惊艳的效果,值得深入探讨。

目录

贡献概述

方法详解

代码赏析

1、load CLIP 模型

2、初始化贝塞尔曲线的初始位置

3、训练

论文和代码地址

个人感悟


贡献概述

一句话概括方法:预训练的CLIP模型被用作最大化给定描述和生成绘图之间相似性的度量。

CLIPDraw不是逼真的图像,而是旨在合成与提示匹配的简单绘图。因此,CLIPDraw优化了一组矢量笔画而不是像素图像,这是一种使绘图偏向于人类可识别的简单形状的约束。

  • 通过调整描述性形容词,如“水彩”或“3D渲染”,CLIPDraw产生大大不同的风格的图纸。
  • CLIPDraw通常以创造性的方式匹配描述提示,例如在图像本身中编写提示词,或以多种方式解释含糊的名词。
  • 使用低笔画数运行CLIPDraw会导致
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉迷单车的追风少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值