Resolving Multi-Condition Confusion for Finetuning-Free Personalized Image Generation
本文提出了一种新的个性化图像生成方法,旨在解决多条件混淆问题。当前的个性化文本到图像生成技术通常依赖于参考图像来生成定制图像,而现有的无微调方法在处理多个参考图像时会遭遇对象混淆问题,即无法准确将每个参考图像映射到其对应的对象上。为了解决这一问题,本文提出了一种加权合并方法,通过评估潜在图像特征与目标对象之间的相关性,来有效地合并多个参考图像特征。实验结果表明,该方法在多个数据集上超越了现有的最先进技术,并显著提高了单一对象个性化图像生成的性能。