每日AIGC最新进展(64):阿里巴巴提出多条件图像编辑方法、美团提出无mask的图像编辑方法FreeEdit、字节提出多模型长视频理解综述

Diffusion Models专栏文章汇总:入门与实战

Resolving Multi-Condition Confusion for Finetuning-Free Personalized Image Generation

本文提出了一种新的个性化图像生成方法,旨在解决多条件混淆问题。当前的个性化文本到图像生成技术通常依赖于参考图像来生成定制图像,而现有的无微调方法在处理多个参考图像时会遭遇对象混淆问题,即无法准确将每个参考图像映射到其对应的对象上。为了解决这一问题,本文提出了一种加权合并方法,通过评估潜在图像特征与目标对象之间的相关性,来有效地合并多个参考图像特征。实验结果表明,该方法在多个数据集上超越了现有的最先进技术,并显著提高了单一对象个性化图像生成的性能。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉迷单车的追风少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值