[文献阅读笔记]:SEPT: TOWARDS EFFICIENT SCENE REPRESENTATION LEARNING FOR MOTION PREDICTION

[文献阅读笔记]:SEPT: TOWARDS EFFICIENT SCENE REPRESENTATION LEARNING FOR MOTION PREDICTION

文章地址:https://arxiv.org/pdf/2309.15289.pdf

1. 概述

SEPT所做的工作和Forecast-MAE总体很像,同样都是采用了自监督学习的方式对模型进行预训练,在此基础上进行fine-tune来预测轨迹输出,感兴趣的小伙伴可以看一下之前的这篇文章,

1.1 模型解决问题的方向

  • 训练方法:自监督学习+监督学习,通过设计不同的三个子学习任务来对模型的结构进行预训练。
  • 网络结构设计:两个不同的transformer模块来依次提取时序和空间交互特征,使用Learnable query与交互特征做cross-attention,输出最后的预测结果。

1.2 主要结论和贡献

  • 作者设计了三种不同的自监督学习方法,分别是

    • *Marked Trajectory Modeling (MTM),*随机mask掉轨迹中的部分点,通过预训练任务,旨在预训练时序特征提取模块,使模块可以更有效的建模时序特征。
    • Masked Road Modeling (MRM),随机mask掉输入道路特征的部分点,旨在训练空间特征提取模块。
    • Tail Prediction (TP),将轨迹分为头部和尾部,旨在通过前半部分的轨迹特征,预测后半部分的轨迹特征,算是简化版的轨迹预测。

SEPT与Forecast在SSL应用上的区别和联系

  • 相同点:

    二者都是通过SSL,对模型的结构进行预训练,旨在获得模型在时序交互、空间交互上特征提取的能力。

  • 不同点:

    对于轨迹的mask:fmae,mask掉一部分比例的历史或者未来轨迹;sept则是mask掉历史轨迹中的部分轨迹点

    对于轨迹的预测:fmae,是预测被mask掉的历史或者未来轨迹;sept则是预测mask掉的轨迹点

    预训练任务:fmae,将车道与轨迹的重建,放到一个预训练任务中,通过一个任务,完成车道线与轨迹 mask部分的重建;

    ​ sept,则是分别预测轨迹、车道获取模型对时序以及空间建模的能力以及通过TP任务完成时空特征的交互。

2. 模型

2.1 模型架构

image-20240204112401639

Input

轨迹:历史轨迹 [ A , T , D h ] [A,T,D_h] [A,T,Dh],其中A为周围障碍物的数量,T为时间序列的长度,特征包括轨迹点坐标,时间戳,类型和其他数据集属性

车道:车道线 [ R , D r ] [R,D_r] [R,Dr],特征包括车道起始点位置,车道长度,车道转向方向和其他数据集属性。另外SEPT还使用了purning model的方法,减少车道线的数量,降低计算量。

Projection

将不同输入维度的特征映射到固定的表征空间 R D \mathbb{R}^D RD D = 256 D=256 D=256是表征空间的维度。
P r o j e c t ( x ) = m a x ( W x + b , 0 ) \mathbf{Project}(x)=max(Wx+b,0) Project(x)=max(Wx+b,0)

TempoNet

由3个堆叠的Transformer blocker组成,输入porject层的输出,维度为 [ A , T , D ] [A,T,D] [A,T,D],沿着T维度做self-attention,对T维度的输入做相对位置嵌入(T5,T5_coding)来编码时间序列的相对位置关系。
s o f t m a x ( Q × K T + p o s i t i o n b i a s ) × V softmax(Q\times K^T+position_{bias})\times V softmax(Q×KT+positionbias)×V
输出经过max-pooling,获得时序特征, [ A , D ] [A,D] [A,D]

SpaNet

由2个堆叠的transformer blocker组成,输入轨迹和车道信息, [ A + S , D ] [A+S,D] [A+S,D],输出轨迹与车道之间的交互特征。

CrossAttender

由3个交叉注意力层组成,与以往轨迹与车道或者轨迹与轨迹之间的交叉注意力不同,本文作者使用一组可学习的query( [ N , D ] , N [N,D],N [N,D]N为预测的轨迹模式)去查询经过时空编码的特征,输出维度为 [ N , D ] [N,D] [N,D]的注意力特征,并经过两个MLP,输出轨迹和概率值。

2.2 模型Pre-Training

image-20240204142554746

  1. MTM学习任务,主要去训练TempoNet学习时间序列的依赖。
  2. MRM学习任务,训练SpaNet学习对于道路时空特征的依赖。
  3. TP学习任务,通过头部轨迹特征预测尾部轨迹,整合时空特征依赖。

2.3 Fine-tune

训练完整的网络即可。

2.4 Loss function

回归损失+分类损失:

image-20240204143016890

3. 实验

image-20240204142731838

image-20240204142756163

TP子学习任务的添加,由着更低的训练方差。

4. 思考和比较

为什么forecast-mae的指标要比sept稍逊一筹?

  1. 输入上:

    fmae输入的是基于上一帧的位移;sept输入的是相对于预测目标的位置信息

  2. 结构上:

    fmae使用NAT做时间序列编码;sept则是采用标准的transformer结构,另外在提取到时空特征后,sept还使用了可学习的query做交叉注意力特征提取,进而,提取到轨迹的高维表示,进而解码输出轨迹特征。

  3. 预训练方法上:
    sept采用的是分部训练+联合训练的方法,分别训练各个模块;fmae则是只使用联合训练的方法。

如何将sept应用到多目标的预测?

​ 1. 多目标表示:时间序列建模时,使用每个预测障碍物自身坐标系下的输入特征,空间序列建模时,进一步添加车辆与轨迹的时空位置嵌入,建模时空下的特征交互

​ 2. 多目标预测:可学习的轨迹query从 [ N , D ] [N,D] [N,D]扩充到 [ A , N , D ] [A,N,D] [A,N,D]

​ 3. 训练策略:Loss function的更改

​ 4. 评估指标:使用multi-agent预测的评估指标。

  • 28
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值