二叉树的递归与非遍历方法
二叉树有两种表示方法 第一种是用链表 第二种是用数组表示 。
数组表示方法比较简单,而链表表示方法比较基础便于理解,所以我们以链表讲解二叉树的遍历。
void PreOrderTraversal(BinaryTreeNode* pRoot)
{
if(pRoot != NULL)
{
cout << pRoot->m_nValue << " ";
PreOrder(pRoot->m_pLeft);
PreOrder(pRoot->m_pRight);
}
}
void InOrderTraversal(BinaryTreeNode* pRoot)
{
if(pRoot != NULL)
{
InOrder(pRoot->m_pLeft);
cout << pRoot->m_nValue << " ";
InOrder(pRoot->m_pRight);
}
}
void PostOrderTraversal(BinaryTreeNode* pRoot)
{
if(pRoot != NULL)
{
PostOrder(pRoot->m_pLeft);
PostOrder(pRoot->m_pRight);
cout << pRoot->m_nValue << " ";
}
}
本篇博客主要讲的是非递归遍历对递归遍历不再多说,[有不了解的小白点击这里](https://blog.csdn.net/qq_40783277/article/details/84110018 “二叉树基础”)
二叉树非递归前序遍历
前序遍历的非递归:因为先处理根结点,比较简单。对每个根结点,先打印出来,然后把孩子结点压入辅助栈中。因为先打印左子树,后打印右子树,所以压栈的时候顺序相反,即先入右孩子再入左孩子。具体操作如下,先将根结点入栈,然后出栈其左右孩子入完,出栈同时将其左右左右不为空的节点入栈**(先右再左)**。重复上述操作,直到栈空。
void PreOrderTraversal(BinaryTreeNode* pRoot)
{
if(pRoot == NULL)
return;
stack<BinaryTreeNode*> s;
s.push(pRoot);
while(!s.empty())
{
BinaryTreeNode* tmp = s.top();
s.pop();
cout << tmp->m_nValue << " ";
if(tmp->m_pRight != NULL)
s.push(tmp->m_pRight);
if(tmp->m_pLeft != NULL)
s.push(tmp->m_pLeft);
}
cout << endl;
}
二叉树的非递归的中序遍历
中序遍历的非递归:中序遍历稍微麻烦一点,打印的时候总是从最左边的一棵子树开始,因此可以用从根结点开始一直将左子结点入栈,然后从栈顶开始打印。对于栈顶元素存在右子树的,它作为根结点应该在右子树之前打印出来,对他的右子树则重复之前的过程。(即不停的找即左之点,将所经过的节点入栈,访问完极左点以及他的双亲节点双出栈,判断他的双亲节点是否有右孩子,如果有重复该操作,没有则出栈)
void InOrderTraversal(BinaryTreeNode* pRoot)
{
stack<BinaryTreeNode*> s;
BinaryTreeNode* pNode = pRoot;
while(pNode || !s.empty())
{
while(pNode)
{
s.push(pNode);
pNode = pNode->m_pLeft;
}
pNode = s.top();
s.pop();
cout << pNode->m_nValue << " ";
pNode = pNode->m_pRight;
}
cout << endl;
}
二叉树的非递归后序遍历
后续遍历的非递归:后序遍历的非递归很有难度,循环的第一步类似与中序遍历类似,总是把左子结点入栈。然后从栈顶弹出元素打印,但是对于栈顶存在右子树的,右子树应该先于根结点打印。所以右子树应该入栈,这里有个问题就是右子树都入栈了并且打印出来回退到之前的根结点时,它的右子树还是存在的,这样又返回了原先的判断,这里可以在右子树中加入标记,如果已经访问过则不再访问。具体操作如下:
oid PostOrderTraversal(BinaryTreeNode* pRoot)
{
if(pRoot == NULL)
return;
stack<BinaryTreeNode*> s;
BinaryTreeNode* pNode = pRoot;
int flag[20];
while(pNode)
{
s.push(pNode);
flag[s.size()] = 0;
pNode = pNode->m_pLeft;
}
while(!s.empty())
{
pNode = s.top();
while(pNode->m_pRight && flag[s.size()] == 0)
{
flag[s.size()] = 1;
pNode = pNode->m_pRight;
while(pNode)
{
s.push(pNode);
flag[s.size()] = 0;
pNode = pNode->m_pLeft;
}
pNode = s.top();
}
cout << pNode->m_nValue << " ";
s.pop();
}
}