- 博客(37)
- 收藏
- 关注
原创 PYTHON专题-(2)python叫你学函数
Python中的函数是一段具有特定功能的代码块,可以被重复调用执行。理解函数的定义、调用、参数传递(包括位置参数、关键字参数、默认参数、可变参数等)以及返回值的概念是学习Python的基础内容之一。函数定义是指在Python中创建一个函数的过程,包括指定函数名、参数列表以及函数体。函数名用于在代码中调用该函数;参数列表用于传递数据给函数;函数体则是包含执行逻辑的代码块。函数调用是指在Python代码中使用已经定义好的函数名,并传递相应的参数来执行函数的过程。
2024-08-04 11:44:46 383
原创 神经网络2-全连接神经网络代码示例
这些网络在全连接神经网络的基础上,引入了卷积、循环等更复杂的连接方式,以适应不同的任务和数据类型。其命名来源于本身的运行原理,即Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程。该函数可以生成一个用于二分类或多分类问题的数据集,其中你可以控制数据集的许多属性,如样本数量、特征数量、信息性特征的数量、冗余特征的数量、噪声级别等。同时,对于自定义指标,你需要确保它们适用于你的任务,并且能够正确地评估模型的性能。
2024-03-06 10:48:52 1175 1
原创 神经网络7-时间卷积神经网络
时间卷积神经网络(Temporal Convolutional Network,TCN)是一种具有时序特性的卷积神经网络,由Lea等人于2016年首次提出,起初应用于视频里动作的分割,后逐渐拓展到了一般性时序领域。TCN将一维全卷积网络、因果卷积和膨胀卷积结合在一起,具有稳定性更高,求解速度更快等优点。
2024-03-04 22:03:13 3398 5
原创 时间序列1-如何分析你的时间序列
时间序列是指将同一统计指标的数值按其发生的时间先后顺序排列而成的数列,其中隐藏着一些过去与未来的关系。时间序列分析也存在一些挑战,如数据的非平稳性、季节性、周期性等因素都可能对预测结果产生影响。因此,在进行时间序列分析时,需要充分考虑这些因素,并选择合适的模型和方法进行预测。今天,我给大家分享一些关于时间序列统计分析的相关知识,这些内容是做时序分析的基础内容。
2024-02-26 19:45:49 1418 1
原创 神经网络3-卷积神经网络一文深度理解
卷积神经网络(Convolutional Neural Network, CNN)是一类包含且具有的前馈神经网络(Feedforward Neural Networks),主要用于图像识别、语音识别和自然语言处理等任务,是深度学习(deep learning)的代表算法之一。卷积神经网络(Convolutional Neural Networks,CNN)是一种专门用来处理具有的数据的神经网络。例如和。卷积网络是指那些至少在网络的一层中使用卷积运算来替代一般的矩阵乘法运算的神经网络。
2024-02-25 20:16:29 1704 3
原创 Pandas快问快答16-30题
聚合操作是数据处理中的一种重要方式,主要用于对一组数据进行汇总和计算,以得到单一的结果。在上面的例子中,我们根据列 'A' 和 'B' 对数据框进行分组,并计算每个组的平均值。如果你需要基于现有列的值来计算新列的值,可以直接使用现有列的名称。在 Pandas 数据框中,你可以使用几种不同的方法来选择某个范围内的行。在 Pandas 数据框中删除一行数据,你可以使用几种不同的方法。请注意,在执行这些操作之前,你需要确保数据框的索引是正确的。方法可以用于在数据框中添加新列,并返回一个新的数据框。
2024-02-20 20:39:49 1191
原创 Pandas快问快答1-15题
使用describe()函数查看数据摘要统计信息# 特定的列描述统计# 显示包括标准差、方差、最小值、四分位数和最大值的更详细的信息。
2024-02-01 20:55:40 2454 1
原创 神经网络1-基础过关
众所周知,机器学习是一门跨学科的学科,主要研究计算机如何通过学习人类的行为和思维模式,以实现某些特定的功能或目标。它涉及到概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科,使用计算机作为工具并致力于真实实时的模拟人类学习方式, 并将现有内容进行知识结构划分来有效提高学习效率。深度学习是机器学习的一个子集或一个重要分支。深度学习是机器学习的一种方法,通过模仿人类神经网络来实现学习。深度学习的目标是让计算机能够从大量数据中自动提取出有用的特征,并进行分类或回归等任务。
2024-01-30 21:59:09 2358 1
原创 BGPstream-快速处理你需要的BGP数据流
本文介绍了 BGPStream,一个开源软件框架 用于历史和实时分析边界网关协议 (BGP) 测量数据。尽管 BGP 是 互联网基础设施,是研究的主题 在互联网性能、安全性、拓扑、 协议、经济等,没有有效的方法 处理大量分布式和/或实时 BGP 测量数据。BGPStream 填补了这一空白,使 高效调查事件,快速原型设计, 以及构建复杂的工具和大规模监控 应用(例如,检测连接中断 或 BGP 劫持攻击)。
2024-01-28 10:00:00 1185 1
原创 BML:快速构建BGP特征的深度解析
BML对于希望从BGP数据中提取出统计特征和图特征的小伙伴特别友好,基本上就是不需要考虑特征构建的问题,同时还能输出相关的图文件和统计文件。
2024-01-27 10:00:00 1049
原创 BML-从BGP数据流中快速收集你需要的特征
dataset.load()将描述集合参数dict的 python 作为输入。字段的输入为一个list-dic,每个字段描述数据集中的一个样本。})])BML 在收集样本数据时,会在样本文件夹下的日志文件中报告进展情况。BML 提供了基础转换对象,我们可以继承这些对象来构建自定义数据转换。在本例中,假设我们要计算在 AS-PATH 中有 Google AS(AS 15169)的区间内收到的公告数量。我们在名为 :GoogleRoutes.py 的文件中实现数据转换。
2024-01-26 10:00:00 1007 1
原创 matplotlib之手打柱状图
柱状图是一种用矩形柱来表示数据分类的图表,是数据分析中最常规的图形之一。本文主要讲解绘制一张心仪的柱状图的基础知识。
2024-01-25 10:00:00 1124
原创 特征工程-特征筛选
在机器学习和数据科学领域,特征筛选是优化模型性能和提高计算效率的关键步骤。当数据集包含大量特征时,不仅增加了计算成本,还可能引入噪声和冗余信息,影响模型的泛化能力。因此,通过特征筛选,让我们能够从原始特征集中挑选出最具信息量的特征,提高模型的预测准确性和可解释性。本文介绍了特征筛选三种方法:过滤法(Filter)、包装法(Wrapper)、嵌入法(Embedded)。
2024-01-23 21:18:37 1916
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人